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C*-algebras
-

Basic generalisation of a locally compact Hausdorff space is a
C*-algebra. The idea is to look at the functor

and replace Co(X) by a non-commutative C*-algebra.
A C*-algebra is a norm closed subalgebra of B(H) (bounded
operators on a Hilbert space H) closed under taking adjoints
a — a*. First examples
® M,(C);, H=C",
® Co(X); h= L?(X,p) where u is any positive Radon
measure nonvanishing on any open subset of X and
f € Co(X) acts by multiplication

[2(X) 3 € — f€ € L2(X).

In fact, any abelian C*-algebra is of this form.

® K(H) the algebra of all compact operators on H.
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The basic norm identity is
Ia*al] = [Jall2.
C*-algebras form a category, with
Morc«(A,B) ={¢: A— B | ¢ is a *-homomorphism}.

The basic C*-identity implies a sensible notion of positivity, and
in particular, every *~homomorphism is automatically
continuous. What distinguishes a C*-algebra from complex
numbers is the fact that the unit ball is not round.
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Kasparov product

We can always add some extra structure, f. ex. a G- action
a: G — Aut(A)

by *-automorphisms, where G is a (second countable) locally
compact group and « is a pointwise continuous
homomorphism. In this case

Mor&.(A, B)

consists of *-homomorphisms preserving group action.
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We can always add some extra structure, f. ex. a G- action
a: G — Aut(A)

by *-automorphisms, where G is a (second countable) locally
compact group and « is a pointwise continuous
homomorphism. In this case

Mor&.(A, B)

consists of *-homomorphisms preserving group action.

Topology

The category of Abelian G-C*-algebras coincides with the
category of pointed compact Hausdorff G-spaces.
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A non-commutative homology theory is a functor on a category
of (separable) C*-algebras (with extra structure) that is
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e (*-stable (Morita invariant)
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e has Puppe exact sequence for mapping cones
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C*-algebras

Homology

Definition
A non-commutative homology theory is a functor on a category
of (separable) C*-algebras (with extra structure) that is

e (*-stable (Morita invariant)

e split-exact

e homotopy invariant

has Puppe exact sequence for mapping cones

Example

K-theory is a non-commutative homology theory
for C*-algebras. It maps separable C*-algebras to the category
AbZ/2 of 7,/2-graded countable Abelian groups.
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KKC is a (bivariant) non-commutative homology theory
for C*-algebras with a G-action.

Cycles in KK¢(A, B)

e Hp is a right Hilbert B-module;

©: A — B(Hp) is a *-representation;
F € B(HB);

¢(a)(F? — 1), ¢(a)(F — F*), and [¢(a), F] are compact
for all a € A;

in the even case, v is a Z/2-grading on Hp;

‘Hp carries a representation U of G which implements
action of G and commutes with F up to compacts.

A cycle is trivial, if all the "compacts" above vanish, and two
cycles are equivalent, if they are homotopic after adding trivial
cycles.
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©® The classes in KK (A, B) are given by semisplit
extensions: 0 > BK—-E —+A—0

® Kasparov product
KKF (A, B) x KKP(B, C) — KK (A, C)

© Excision. Given a semisplit short exact sequence
0—1—A— A/l =0, there exists an associated six
term exact sequence

KK®

KKS(A/I, B) —= KK§ (A, B) — KKE (I, B)
! }

| !
KK1G(A7 B) -~ KK1G(A7 B) = Kch(A/I7 B)

and similarly in the second variable.
® For G compact group
e KKS(C,A) = K¢(A) = K.(A x G) - equivariant K-theory
e KKS(C,C) = Rg - the representation ring of G.
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Suppose that G = Z. Then
The cycles are given as follows

e An even representation of Z on a Hilbert space
H = H' @ H~ (hence a pair of unitary operators
Ute u),

e A Fredholm operator F : H™ — H™ which intertwines U™
with U~ modulo compacts.

Then the class of (U, F) gives

Index(F) = dim ker F — dim coker F € Z.

Theorem (BC for Z)

KKZ(C,C) 5 F — Index(F) € Z

is an isomorphism.
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Kasparov product

The Kasparov product
KKE(C, B) x KK$(B, C) — KKE,4(C, C)

has an explicit description as follows.

________________________________________________________|
Given class [D] € KK{ (B, C), represent it by a semisplit extension

0>C®K—E—B—0.

Then the pairing
N[D] : K$(B) — K&1(C)

coincides with the boundary map § in the six-term exact sequence

K3 (C) — K¢’ (E) — Ky’ (B)

K (B) < KK{(E) < K{(C)
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The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C*-stable, split-exact
functor on the category of separable C*-algebras.

That is, a functor from the category of separable C*-algebras
to some additive category factors through KK if and only if it is

C*-stable and split-exact, and this factorisation is unique if it
exists.
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e s functor on the category of separable C*-algebras.

KK ©-category

That is, a functor from the category of separable C*-algebras
to some additive category factors through KK if and only if it is
C*-stable and split-exact, and this factorisation is unique if it
exists.

Equivariant versions of KK are characterised by analogous
universal properties.
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Theorem (Joachim Cuntz and Nigel Higson)

C*-algebras

Bivariant KK-theory is the universal C*-stable, split-exact
functor on the category of separable C*-algebras.

That is, a functor from the category of separable C*-algebras
to some additive category factors through KK if and only if it is
C*-stable and split-exact, and this factorisation is unique if it
exists.

Equivariant versions of KK are characterised by analogous
universal properties.

Corollary

C*-stability and split-exactness
— homotopy invariance, Bott periodicity, Connes—Thom
Isomorphism, ...
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Ryszard Nest morphisms given by KK (the composition of morphisms is
given by Kasparov product.

Theorem
The following gives KK© triangulated structure
® Shift A— SA= G(R, A)

® Exact triangles
\ o/
Ve
E

are given by semisplit extensions

KKG—category

B

A

0—+SB—+E—-A—=0
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Definition
Set ao: A— C(G, A) to be the *-homomorphism
a(a)(g) = g %(a) The reduced crossed product,

KKC-
category A Nred G

is the C*-algebra on A ® L?(G) generated by (products of
elements in) a(A) and the regular representation of G.
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KKG—category

Given A € KK©, look at A[G].
Definition

Set ao: A— C(G, A) to be the *-homomorphism
a(a)(g) = g %(a) The reduced crossed product,

A X red G

is the C*-algebra on A ® L?(G) generated by (products of
elements in) a(A) and the regular representation of G.

Definition

The full crossed product, A x G, is the universal enveloping
C*-algebra of A[G].



On Baum
Connes
conjecture

Ryszard Nest Basic object of study is the functor
KK® 3 A= F(A) = K.(A X ,eq G) € Ab%/?2,

This is essentially the functor which describes harmonic
analysis for group actions. It is homotopy invariant, but not
excisive. Basic reason is the fact the functor A= A X,eq G is
in general not exact.

Given a homotopy functor F, construct a homology (excisive)
functor ILF and natural transformation ILF = F, universal for
this situation

Assembly

We will use the triangulated structure of KK©.
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{j|j=0in KK", for every compact subgroup H C G}

There is the corresponding projective class P in KK©,
consisting of the collection of algebras P satisfying

J(A, B) o KKC(P,A) =0

for all A, B.
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Let J be an ideal in KK© given by
{j|j=0in KK", for every compact subgroup H C G}

There is the corresponding projective class P in KK €,
consisting of the collection of algebras P satisfying

J(A, B) o KKC(P,A) =0

for all A, B.

Example

® T = KK" for a discrete group I
@ j € J if, for all torsion subgroups H C T, j = 0 in KK

© P coincides with the usual class of proper [-algebras.
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Theorem

There are enough projectives in KK, and, given any
A € KK, there exists a projective cover

Assembly

Pa e P, Dac KKC(Pa,A)

universal for morphisms from P to A
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Definition
K-homology Let E; be the universal proper action of G (it
exists!)

KE(A) = lim{KKE(C(X),A) | X C Eg, X/G compact}

In the case when A = C(M) is abelian, this is the usual
equivariant K-homology of M.

Theorem
Ki(Pa x G) = KE(A) and the assembly for F is given by

KE(A) = Ky(Pa x G) —22

K (A X red G)
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KE(A) = Ki(A Xreq G)

is an isomorphism.

Baum-Connes
conjecture
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TS The assembly map

K&(A) = Ki(A X g G)
is an isomorphism.

@ True for discrete groups acting properly isometrically on
Hilbert spaces

conjecture

@® True for almost connected groups (Connes Kasparov
conjecture)

©® True for Sp(n,1)
©® Open for SL(3,Z)
@ False for "non-exact groups" (if they exist).
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Corollaries of BC

@ Injectivity of assembly implies Novikov conjecture (Higher
L-genera are homotopy invariant)

Baum-Connes

e @® Surjectivity of assembly implies Kaplansky conjecture (for
torsion free G, C;;(G) has no nontrivial idempotents.
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PA:P@NG

Since Pc is a projective cover, there exists an Adams type
spectral sequence computing KZ(A)

Categorical
reformulation

G has a y-element, if D¢ € KKG(P@,(C) has a left inverse Q,
and then v6 = QD¢ € KK¢(C,C).
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Categorical
reformulation

In general, it is enough to find the "Dirac" element D = D¢,

since
PA = P(C x G

Remark

Since Pc is a projective cover, there exists an Adams type
spectral sequence computing KZ(A)

G has a y-element, if D¢ € KKG(P@,(C) has a left inverse Q,
and then v6 = QD¢ € KK¢(C,C).

|
All proofs of BC go via showing that s acts as identity on

K*(' A red G)
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Example: I

G satisfies the strong Baum-Connes conjecture, if v = 1. This
is equivalent to saying that every object in KK© is in the
localizing category generated by the subcategory of projectives.
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r
o J=Ker: KKZ — KK

The J-projective resolution of C has the form

K(1?(Z)) C ~ Yco(Z) 0

NN

Co(Z

l1-0o

The projective cover of C ~z K(/2(Z)) is just the mapping
cone
Co(Z) — CQ(Z) — ZCl_U.

But this is just the rotated exact triangle associated to the
extension

0— ZC()(Z) — CO(R) — Co(Z) — 07

the x-homomorphism Co(R) — co(Z) given by the evaluation
f — f‘Z-
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Conclusion

Pc = CGo(R?), D = 0, the usual Dirac operator (or rather its
phase),

K3 (A) = K. ((A® Go(R?)) x Z) — Ky (A x Z),

where the assembly map is given by the product with Dirac
operator.

The spectral sequence computing K7 (A) becomes the six term
exact sequence in K-theory associated to the extension

Y(AR(Z) X Z — (AR G(R?)) X Z — (A® co(Z)) x Z

Since (A® co(Z)) x Z ~ A® K, this is just the usual
Pimsner-Voiculescu exact sequence.
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