On Baum Connes conjecture

Ryszard Nest

University of Copenhagen

16th June 2010
Basic generalisation of a locally compact Hausdorff space is a C*-algebra. The idea is to look at the functor

\[X \mapsto C_0(X) \]

and replace \(C_0(X) \) by a non-commutative C*-algebra. A C*-algebra is a norm closed subalgebra of \(B(H) \) (bounded operators on a Hilbert space \(H \)) closed under taking adjoints \(a \to a^\ast \). First examples

1. \(M_n(\mathbb{C}); \; H = \mathbb{C}^n \),
2. \(C_0(X); \; h = L^2(X, \mu) \) where \(\mu \) is any positive Radon measure nonvanishing on any open subset of \(X \) and \(f \in C_0(X) \) acts by multiplication

\[L^2(X) \ni \xi \to f\xi \in L^2(X). \]

In fact, any abelian C*-algebra is of this form.

3. \(K(H) \) the algebra of all compact operators on \(H \).
The basic norm identity is

\[||a^* a|| = ||a||^2. \]

C*-algebras form a category, with

\[\text{Mor}_{C^*}(A, B) = \{ \phi : A \to B \mid \phi \text{ is a } *\text{-homomorphism} \}. \]

The basic C*-identity implies a sensible notion of positivity, and in particular, every *-homomorphism is automatically continuous. What distinguishes a C*-algebra from complex numbers is the fact that the unit ball is not round.
We can always add some extra structure, f. ex. a G-action

$$\alpha : G \rightarrow Aut(A)$$

by \ast-automorphisms, where G is a (second countable) locally compact group and α is a pointwise continuous homomorphism. In this case

$$\text{Mor}^G_C(A, B)$$

consists of \ast-homomorphisms preserving group action.
We can always add some extra structure, f. ex. a G-action

$$\alpha : G \to Aut(A)$$

by \ast-automorphisms, where G is a (second countable) locally compact group and α is a pointwise continuous homomorphism. In this case

$$Mor^G_{\ast}(A, B)$$

consists of \ast-homomorphisms preserving group action.

Topology

The category of Abelian G-\ast-algebras coincides with the category of pointed compact Hausdorff G-spaces.
Definition

A non-commutative homology theory is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones

Example: $\Gamma = \mathbb{Z}$
Definition

A **non-commutative homology theory** is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
A non-commutative homology theory is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
- split-exact
A **non-commutative homology theory** is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
- split-exact
- homotopy invariant
A non-commutative homology theory is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones
Definition

A non-commutative homology theory is a functor on a category of (separable) C^*-algebras (with extra structure) that is

- C^*-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones

Example

K-theory is a non-commutative homology theory for C^*-algebras. It maps separable C^*-algebras to the category $\text{Ab}_{\mathbb{Z}/2}^c$ of $\mathbb{Z}/2$-graded countable Abelian groups.
Example

KK^G is a (bivariant) non-commutative homology theory for C^*-algebras with a G-action.

Cycles in $KK^G(A, B)$

- \mathcal{H}_B is a right Hilbert B-module;
- $\varphi: A \to B(\mathcal{H}_B)$ is a $*$-representation;
- $F \in B(\mathcal{H}_B)$;
- $\varphi(a)(F^2 - 1)$, $\varphi(a)(F - F^*)$, and $[\varphi(a), F]$ are compact for all $a \in A$;
- in the even case, γ is a $\mathbb{Z}/2$-grading on \mathcal{H}_B;
- \mathcal{H}_B carries a representation U of G which implements action of G and commutes with F up to compacts.

A cycle is trivial, if all the "compacts" above vanish, and two cycles are equivalent, if they are homotopic after adding trivial cycles.
Some properties of KK^G

1. The classes in $KK^G_1(A, B)$ are given by semisplit extensions: $0 \to B \otimes K \to E \to A \to 0$

2. Kasparov product

 $KK^G_i(A, B) \times KK^G_j(B, C) \to KK^G_{i+j}(A, C)$

3. Excision. Given a semisplit short exact sequence

 $0 \to I \to A \to A/I \to 0$, there exists an associated six term exact sequence

 $$
 KK^G_0(A/I, B) \to KK^G_0(A, B) \to KK^G_0(I, B)
 $$

 and similarly in the second variable.

4. For G compact group

 - $KK^*_G(\mathbb{C}, A) = K^*_G(A) = K_*(A \rtimes G)$ - equivariant K-theory
 - $KK^*_G(\mathbb{C}, \mathbb{C}) = R_G$ - the representation ring of G.

Suppose that $G = \mathbb{Z}$. Then

The cycles are given as follows

- An even representation of \mathbb{Z} on a Hilbert space $H = H^+ \oplus H^-$ (hence a pair of unitary operators $U^+ \oplus U^-$),

- A Fredholm operator $F : H^+ \to H^-$ which intertwines U^+ with U^- modulo compacts.

Then the class of (U, F) gives

$$\text{Index}(F) = \dim \ker F - \dim \coker F \in \mathbb{Z}.$$

Theorem (BC for \mathbb{Z})

$$KK^\mathbb{Z}_0 (\mathbb{C}, \mathbb{C}) \ni F \to \text{Index}(F) \in \mathbb{Z}$$

is an isomorphism.
The Kasparov product

\[KK^*_G(C, B) \times KK^*_G(B, C) \to KK^*_G(C, C) \]

has an explicit description as follows.

Given class \([D] \in KK^*_G(B, C)\), represent it by a semisplit extension

\[0 \to C \otimes K \to E \to B \to 0. \]

Then the pairing

\[\cap [D] : K^*_G(B) \to K^*_G(C) \]

coincides with the boundary map \(\delta\) in the six-term exact sequence

\[K^0_G(C) \to K^0_G(E) \to K^0_G(B) \]
\[\to K^1_G(B) \leftarrow KK^1_G(E) \leftarrow K^1_G(C) \]

\[\delta \]
\[\delta \]
The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C*-stable, split-exact functor on the category of separable C*-algebras.

That is, a functor from the category of separable C*-algebras to some additive category factors through KK if and only if it is C*-stable and split-exact, and this factorisation is unique if it exists.
The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C-stable, split-exact functor on the category of separable C*-algebras.*

That is, a functor from the category of separable C*-algebras to some additive category factors through KK if and only if it is C*-stable and split-exact, and this factorisation is unique if it exists.

Equivariant versions of KK are characterised by analogous universal properties.
The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C^-stable, split-exact functor on the category of separable C^*-algebras. That is, a functor from the category of separable C^*-algebras to some additive category factors through KK if and only if it is C^*-stable and split-exact, and this factorisation is unique if it exists.*

Equivariant versions of KK are characterised by analogous universal properties.

Corollary

C^*-stability and split-exactness

\longrightarrow homotopy invariance, Bott periodicity, Connes–Thom Isomorphism, ...
Let KK^G be the category of G-C^*-algebras (separable) with morphisms given by KK_0^G (the composition of morphisms is given by Kasparov product.

Theorem

The following gives KK^G triangulated structure

1. **Shift** $A \to SA = C_0(\mathbb{R}, A)$
2. **Exact triangles**

\[
\begin{array}{ccc}
A & \xrightarrow{} & B \\
\downarrow & & \downarrow \\
E & \xleftarrow{} & A \\
\end{array}
\]

are given by semisplit extensions

\[0 \to SB \to E \to A \to 0\]

Definition

Set $\alpha : A \to C(G, A)$ to be the $*$-homomorphism $\alpha(a)(g) = g^{-1}(a)$ The reduced crossed product,

$$A \rtimes_{\text{red}} G$$

is the C^*-algebra on $A \otimes L^2(G)$ generated by (products of elements in) $\alpha(A)$ and the regular representation of G.

Definition

Set $\alpha : A \to C(G, A)$ to be the $*$-homomorphism $\alpha(a)(g) = g^{-1}(a)$ The reduced crossed product, $A \rtimes_{red} G$

is the C^*-algebra on $A \otimes L^2(G)$ generated by (products of elements in) $\alpha(A)$ and the regular representation of G.

Definition

Basic object of study is the functor

\[KK^G \ni A \Rightarrow F(A) = K_*(A \rtimes_{\text{red}} G) \in \text{Ab}^{\mathbb{Z}/2\mathbb{Z}}. \]

This is essentially the functor which describes harmonic analysis for group actions. It is homotopy invariant, but not excisive. Basic reason is the fact the functor \(A \Rightarrow A \rtimes_{\text{red}} G \) is in general not exact.

"Assembly"

Given a homotopy functor \(F \), construct a homology (excisive) functor \(\mathbb{L}F \) and natural transformation \(\mathbb{L}F \Rightarrow F \), universal for this situation

We will use the triangulated structure of \(KK^G \).
Let \mathcal{I} be an ideal in KK^G given by

\[\{ j \mid j = 0 \text{ in } KK^H, \text{ for every compact subgroup } H \subset G \} \]

There is the corresponding projective class \mathcal{P} in KK^G, consisting of the collection of algebras P satisfying

\[\mathcal{I}(A, B) \circ KK^G(P, A) = 0 \]

for all A, B.

Example: $\Gamma = \mathbb{Z}$.
Let \(\mathcal{I} \) be an ideal in \(KK^G \) given by

\[
\{ j \mid j = 0 \text{ in } KK^H, \text{ for every compact subgroup } H \subset G \}
\]

There is the corresponding projective class \(\mathcal{P} \) in \(KK^G \), consisting of the collection of algebras \(P \) satisfying

\[
\mathcal{I}(A, B) \circ KK^G(P, A) = 0
\]

for all \(A, B \).

\[
\begin{array}{l}
\text{Example} \\
\text{1. } \mathcal{I} = KK^\Gamma \text{ for a discrete group } \Gamma \\
\text{2. } j \in \mathcal{I} \text{ if, for all torsion subgroups } H \subset \Gamma, j = 0 \text{ in } KK^H \\
\text{3. } \mathcal{P} \text{ coincides with the usual class of proper } \Gamma\text{-algebras.}
\end{array}
\]
Theorem

There are enough projectives in KK^G, and, given any $A \in KK^G$, there exists a projective cover

$$P_A \in \mathcal{P}, \quad D_A \in KK^G(P_A, A)$$

universal for morphisms from \mathcal{P} to A
Definition

K-homology Let E_G be the universal proper action of G (it exists!)

$$K_G^*(A) = \lim \{ KK_G^*(C(X), A) \mid X \subset E_G, X/G \text{ compact} \}$$

In the case when $A = C(M)$ is abelian, this is the usual equivariant K-homology of M.

Theorem

$$K^*_*(P_A \rtimes G) = K^*_G(A) \text{ and the assembly for } F \text{ is given by}$$

$$K_G^*(A) = K^*_*(P_A \rtimes G) \xrightarrow{D_A} K^*_*(A \rtimes_{red} G)$$
Baum Connes conjecture

The assembly map

\[K_G^*(A) \to K_*(A \rtimes_{\text{red}} G) \]

is an isomorphism.
Baum Connes conjecture

The assembly map

\[K^*_G(A) \rightarrow K_*(A \rtimes_{red} G) \]

is an isomorphism.

Status

1. True for discrete groups acting properly isometrically on Hilbert spaces
2. True for almost connected groups (Connes Kasparov conjecture)
3. True for \(\text{Sp}(n,1) \)
4. Open for \(\text{SL}(3,\mathbb{Z}) \)
5. False for "non-exact groups" (if they exist).
Corollaries of BC

1. Injectivity of assembly implies Novikov conjecture (Higher \(L\)-genera are homotopy invariant)

2. Surjectivity of assembly implies Kaplansky conjecture (for torsion free \(G\), \(C^*_{\text{red}}(G)\) has no nontrivial idempotents.)
In general, it is enough to find the "Dirac" element $D = D_\mathbb{C}$, since

$$P_A = P_\mathbb{C} \rtimes G$$

Remark

Since $P_\mathbb{C}$ is a projective cover, there exists an Adams type spectral sequence computing $K_*^G(A)$

G has a γ-element, if $D_\mathbb{C} \in KK^G(P_\mathbb{C}, \mathbb{C})$ has a left inverse Q, and then $\gamma_G = QD_\mathbb{C} \in KK^G(\mathbb{C}, \mathbb{C})$.
In general, it is enough to find the "Dirac" element $D = D_\mathbb{C}$, since

$$P_A = P_\mathbb{C} \rtimes G$$

Remark

Since $P_\mathbb{C}$ is a projective cover, there exists an Adams type spectral sequence computing $K^*_G(A)$

G has a γ-element, if $D_\mathbb{C} \in KK^G(P_\mathbb{C}, \mathbb{C})$ has a left inverse Q, and then $\gamma_G = QD_\mathbb{C} \in KK^G(\mathbb{C}, \mathbb{C})$.

All proofs of BC go via showing that γ_G acts as identity on $K_*(\cdot \rtimes_{red} G)$
G satisfies the strong Baum-Connes conjecture, if $\gamma_G = 1$. This is equivalent to saying that every object in KK^G is in the localizing category generated by the subcategory of projectives.
On Baum Connes conjecture

Ryszard Nest

Non-commutative topology
C*-algebras
Homology
KK^G
Kasparov product

KK^G-category
Assembly
Baum-Connes conjecture
Categorical reformulation
Example: Γ = Z

- Γ = Z
- $\mathcal{I} = \text{Ker}: KK^\mathbb{Z} \to KK$

The \mathcal{I}-projective resolution of \mathbb{C} has the form

\[
\begin{array}{ccccccccc}
\mathcal{K}(l^2(\mathbb{Z})) & \rightarrow & C \simeq \Sigma c_0(\mathbb{Z}) & \rightarrow & 0 \\
\pi & & \Sigma & & \\
c_0(\mathbb{Z}) & \leftarrow & 1-\sigma & \leftarrow & c_0(\mathbb{Z})
\end{array}
\]

The projective cover of $\mathbb{C} \simeq_{KK^\mathbb{Z}} \mathcal{K}(l^2(\mathbb{Z}))$ is just the mapping cone

$c_0(\mathbb{Z}) \rightarrow c_0(\mathbb{Z}) \rightarrow \Sigma C_{1-\sigma}$.

But this is just the rotated exact triangle associated to the extension

$0 \rightarrow \Sigma c_0(\mathbb{Z}) \rightarrow C_0(\mathbb{R}) \rightarrow c_0(\mathbb{Z}) \rightarrow 0$,

the $*$-homomorphism $C_0(\mathbb{R}) \rightarrow c_0(\mathbb{Z})$ given by the evaluation $f \rightarrow f|_\mathbb{Z}$.
Conclusion

$P_{\mathbb{C}} = C_0(\mathbb{R}^2)$, $D = \overline{\partial}$, the usual Dirac operator (or rather its phase),

$$K_{\mathbb{Z}}^*(A) = K_*((A \otimes C_0(\mathbb{R}^2)) \rtimes \mathbb{Z}) \to K_*(A \rtimes \mathbb{Z}),$$

where the assembly map is given by the product with Dirac operator.

The spectral sequence computing $K_{\mathbb{Z}}^*(A)$ becomes the six term exact sequence in K-theory associated to the extension

$$\Sigma(A \otimes c_0(\mathbb{Z})) \rtimes \mathbb{Z} \hookrightarrow (A \otimes C_0(\mathbb{R}^2)) \rtimes \mathbb{Z} \twoheadrightarrow (A \otimes c_0(\mathbb{Z})) \rtimes \mathbb{Z}$$

Since $(A \otimes c_0(\mathbb{Z})) \rtimes \mathbb{Z} \simeq A \otimes \mathcal{K}$, this is just the usual Pimsner-Voiculescu exact sequence.