Ryszard Nest

Noncommutative topology C*-algebras Homology *KK*^G Kasparov product

KK^G-category

Assembly Baum-Connes conjecture Categorical

Example: $\Gamma = \mathbb{Z}$

On Baum Connes conjecture

Ryszard Nest

University of Copenhagen

16th June 2010

Ryszard Nest

Noncommutative topology

C*-algebras Homology *KK^G*

KK^G-categor

Assembly Baum-Connes conjecture Categorical reformulation Example: $\Gamma =$ Basic generalisation of a locally compact Hausdorff space is a C*-algebra. The idea is to look at the functor

$$X \rightsquigarrow C_0(X)$$

and replace $C_0(X)$ by a non-commutative C*-algebra. A C*-algebra is a norm closed subalgebra of B(H) (bounded operators on a Hilbert space H) closed under taking adjoints $a \rightarrow a^*$. First examples

$$1 M_n(\mathbb{C}); \ H = \mathbb{C}^n,$$

C₀(X); h = L²(X, µ) where µ is any positive Radon measure nonvanishing on any open subset of X and f ∈ C₀(X) acts by multiplication

$$L^2(X) \ni \xi \to f\xi \in L^2(X).$$

In fact, any abelian C*-algebra is of this form.

3 K(H) the algebra of all compact operators on H.

Ryszard Nest

Noncommutative topology

C*-algebras Homology *KK^G*

KK^G-category

Assembly Baum-Connes conjecture Categorical reformulation Example: Γ = 2

The basic norm identity is

$$||a^*a|| = ||a||^2.$$

C*-algebras form a category, with

 $Mor_{C^*}(A, B) = \{\phi : A \to B \mid \phi \text{ is a *-homomorphism}\}.$

The basic C*-identity implies a sensible notion of positivity, and in particular, every *-homomorphism is automatically continuous. What distinguishes a C*-algebra from complex numbers is the fact that the unit ball is not round.

Ryszard Nest

Noncommutative topology

C*-algebras Homology *KK^G* Kasparov produ

KK^G-categor

Baum-Connes conjecture Categorical reformulation We can always add some extra structure, f. ex. a $\ensuremath{\textit{G}}\xspace$ - action

$$\alpha: G \to Aut(A)$$

by *-automorphisms, where G is a (second countable) locally compact group and α is a pointwise continuous homomorphism. In this case

$$Mor_{C^*}^G(A, B)$$

consists of *-homomorphisms preserving group action.

Ryszard Nest

Noncommutative topology

C*-algebras Homology *KK^G* Kasparov produ

KK^G-categor

Baum-Connes conjecture Categorical reformulation Example: $\Gamma =$ We can always add some extra structure, f. ex. a $\ensuremath{\textit{G}}\xspace$ - action

$$\alpha: G \to Aut(A)$$

by *-automorphisms, where G is a (second countable) locally compact group and α is a pointwise continuous homomorphism. In this case

$$Mor_{C^*}^G(A, B)$$

consists of *-homomorphisms preserving group action.

Topology

The category of Abelian G-C*-algebras coincides with the category of pointed compact Hausdorff G-spaces.

Ryszard Nest

Noncommutativ topology

C*-algebras

Homology

KK^G

Kasparov product

KK^G-category

Assembly Baum-Connes conjecture Categorical

Example: $\Gamma = \mathbb{Z}$

Definition

Ryszard Nest

Noncommutativ topology

C*-algebras

Homology

KK^G

KK^G-category

Assembly Baum-Connes conjecture Categorical reformulation Example: $\Gamma = \mathbb{Z}$ Definition

A non-commutative homology theory is a functor on a category of (separable) C^* -algebras (with extra structure) that is

• C*-stable (Morita invariant)

Ryszard Nest

Non-

- commutat topology
- C*-algebras

Homology

KK^G

KK^G-category

- Assembly Baum-Connes conjecture Categorical reformulation
- Example: $\Gamma = 2$

Definition

- C*-stable (Morita invariant)
- split-exact

Ryszard Nest

Non-

- commutati topology
- C*-algebras
- Homology
- KK^G

KK^G-categor

- Assembly Baum-Connes conjecture Categorical
- reformulation

Definition

- C*-stable (Morita invariant)
- split-exact
- homotopy invariant

Ryszard Nest

Non-

- commutati topology
- C*-algebras
- Homology
- KK^G

KK^G-categor

- Assembly Baum-Connes conjecture
- Categorical reformulation

Definition

- C*-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones

Ryszard Nest

Non-

- commutati topology
- C*-algebras

Homology

KK^G

KK^G-category

- Assembly Baum-Connes conjecture Categorical reformulation
- Example: $\Gamma = \mathbb{Z}$

Definition

A non-commutative homology theory is a functor on a category of (separable) C^* -algebras (with extra structure) that is

- C*-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones

Example

K-theory is a non-commutative homology theory for C*-algebras. It maps separable C*-algebras to the category $\mathfrak{Ab}_c^{\mathbb{Z}/2}$ of $\mathbb{Z}/2$ -graded countable Abelian groups.

Ryszard Nest

Noncommutative topology

C*-algebras

кк

Kasparov product

KK^G-categor

Baum-Connes conjecture Categorical reformulation Example

 KK^G is a (bivariant) non-commutative homology theory for C^* -algebras with a G-action.

Cycles in $KK^{G}(A, B)$

- \mathcal{H}_B is a right Hilbert *B*-module;
- $\varphi \colon \mathcal{A} \to \operatorname{B}(\mathcal{H}_{\operatorname{B}})$ is a *-representation;
- $F \in \mathrm{B}(\mathcal{H}_{\mathrm{B}});$
- φ(a)(F² − 1), φ(a)(F − F^{*}), and [φ(a), F] are compact for all a ∈ A;
- in the even case, γ is a $\mathbb{Z}/2$ -grading on \mathcal{H}_B ;
- \mathcal{H}_B carries a representation U of G which implements action of G and commutes with F up to compacts.

A cycle is trivial, if all the "compacts" above vanish, and two cycles are equivalent, if they are homotopic after adding trivial cycles.

Ryszard Nest

- Noncommutat
- C*-algebras
- Homology
- КК^G
- Kasparov product
- KK^G-categor
- Assembly Baum-Connes conjecture Categorical
- Example: $\Gamma =$

Some properties of KK^G

- **1** The classes in $\mathsf{KK}_1^G(A, B)$ are given by semisplit extensions: $0 \to B \otimes \mathsf{K} \to E \to A \to 0$
- **2** Kasparov product $\mathsf{KK}_i^G(A, B) \times \mathsf{KK}_j^G(B, C) \to \mathsf{KK}_{i+j}^G(A, C)$
- 3 Excision. Given a semisplit short exact sequence
 0 → I → A → A/I → 0, there exists an associated six term exact sequence

and similarly in the second variable.

- 4 For G compact group
 - $KK^{G}_{*}(\mathbb{C},A) = K^{G}_{*}(A) = K_{*}(A \rtimes G)$ equivariant K-theory
 - $KK^G_*(\mathbb{C},\mathbb{C}) = R_G$ the representation ring of G.

Ryszard Nest

- Noncommutative topology
- C*-algebras
- Homolog KK^G
- KK^o
- KKG cotoror
- Assembly Baum-Connes conjecture Categorical reformulation

Suppose that $G = \mathbb{Z}$. Then The cycles are given as follows

- An even representation of \mathbb{Z} on a Hilbert space $H = H^+ \oplus H^-$ (hence a pair of unitary operators $U^+ \oplus U^-$),
- A Fredholm operator $F : H^+ \to H^-$ which intertwines U^+ with U^- modulo compacts.

Then the class of (U, F) gives

 $Index(F) = \dim \ker F - \dim \operatorname{coker} F \in \mathbb{Z}.$

Theorem (BC for \mathbb{Z})

```
\mathit{KK}_0^{\mathbb{Z}}(\mathbb{C},\mathbb{C}) \ni \mathit{F} \to \mathrm{Index}(\mathrm{F}) \in \mathbb{Z}
```

is an isomorphism.

Ryszard Nest

Noncommutati topology C*-algebras Homology

Kasparov product

KK^G-category

Baum-Connes conjecture Categorical reformulation Example: $\Gamma = 3$

The Kasparov product

$$\mathsf{KK}^{\mathcal{G}}_*(\mathbb{C},B) imes \mathsf{KK}^{\mathcal{G}}_1(B,\mathcal{C}) o \mathsf{KK}^{\mathcal{G}}_{*+1}(\mathbb{C},\mathcal{C})$$

has an explicit description as follows.

Given class $[D] \in KK_1^G(B, C)$, represent it by a semisplit extension

 $0 \rightarrow C \otimes \mathsf{K} \rightarrow E \rightarrow B \rightarrow 0.$

Then the pairing

$$\cap [D]: K^G_*(B) \to K^G_{*+1}(C)$$

coincides with the boundary map δ in the six-term exact sequence

Ryszard Nest

Noncommutativ topology C*-algebras

Homology

KK°

Kasparov product

KK^G-catego

Baum-Connes conjecture Categorical reformulation Example: Γ = :

The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C^* -stable, split-exact functor on the category of separable C^* -algebras. That is, a functor from the category of separable C^* -algebras to some additive category factors through KK if and only if it is C^* -stable and split-exact, and this factorisation is unique if it exists.

Ryszard Nest

Noncommutativ topology C*-algebras

KK^G

Kasparov product

KK^G-catego

Baum-Connes conjecture Categorical reformulation Example: Γ = 2

The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C^* -stable, split-exact functor on the category of separable C^* -algebras. That is, a functor from the category of separable C^* -algebras to some additive category factors through KK if and only if it is C^* -stable and split-exact, and this factorisation is unique if it exists.

Equivariant versions of KK are characterised by analogous universal properties.

Ryszard Nest

Noncommutativ topology C*-algebras

KK^G

Kasparov product

KK^G-categor

Baum-Connes conjecture Categorical reformulation Example: Γ = 2

The universality of Kasparov theory

Theorem (Joachim Cuntz and Nigel Higson)

Bivariant KK-theory is the universal C^* -stable, split-exact functor on the category of separable C^* -algebras. That is, a functor from the category of separable C^* -algebras to some additive category factors through KK if and only if it is C^* -stable and split-exact, and this factorisation is unique if it exists.

Equivariant versions of KK are characterised by analogous universal properties.

Corollary

C*-stability and split-exactness

→ homotopy invariance, Bott periodicity, Connes–Thom Isomorphism, . . .

Ryszard Nest

Noncommutative topology

C*-algebras

KKG

NN.

Kasparov product

KK^G-category

Assembly Baum-Connes conjecture

reformulation

Let KK^G be the category of G-C*-algebras (separable) with morphisms given by KK_0^G (the composition of morphisms is given by Kasparov product.

Theorem

The following gives KK^G triangulated structure

1 Shift
$$A o SA = C_0(\mathbb{R}, A)$$

2 Exact triangles

are given by semisplit extensions

$$0 \rightarrow SB \rightarrow E \rightarrow A \rightarrow 0$$

Ryszard Nest

Noncommutativ topology

Homology

KK^G

Kasparov product

KK^G -category

Baum-Connes conjecture Categorical reformulation Example: Γ =

Given $A \in KK^G$, look at A[G].

Definition

Set $\alpha : A \to C(G, A)$ to be the *-homomorphism $\alpha(a)(g) = g^{-1}(a)$ The reduced crossed product,

$A\rtimes_{\mathit{red}} G$

is the C*-algebra on $A \otimes L^2(G)$ generated by (products of elements in) $\alpha(A)$ and the regular representation of G.

Ryszard Nest

Noncommutativ topology C*-algebras

Homology

KK^o

Kasparov product

KK^G-category

Baum-Connes conjecture Categorical reformulation Example: $\Gamma =$

Given $A \in KK^G$, look at A[G].

Definition

Set $\alpha : A \to C(G, A)$ to be the *-homomorphism $\alpha(a)(g) = g^{-1}(a)$ The reduced crossed product,

 $A\rtimes_{\mathit{red}} G$

is the C*-algebra on $A \otimes L^2(G)$ generated by (products of elements in) $\alpha(A)$ and the regular representation of G.

Definition

The full crossed product, $A \rtimes G$, is the universal enveloping C*-algebra of A[G].

Ryszard Nest

Noncommutativ topology C*-algebras

KKG

Kasnarov pr

KK^G-category

Assembly

Baum-Connes conjecture Categorical reformulation Example: Γ =

Basic object of study is the functor

$$KK^{G} \ni A \Rightarrow F(A) = K_{*}(A \rtimes_{red} G) \in \mathfrak{Ab}^{\mathbb{Z}/2\mathbb{Z}}.$$

This is essentially the functor which describes harmonic analysis for group actions. It is homotopy invariant, but not excisive. Basic reason is the fact the functor $A \Rightarrow A \rtimes_{red} G$ is in general not exact.

"Assembly"

Given a homotopy functor F, construct a homology (excisive) functor $\mathbb{L}F$ and natural transformation $\mathbb{L}F \Rightarrow F$, universal for this situation

We will use the triangulated structure of KK^G .

Ryszard Nest

Noncommutativ topology C*-algebras Homology KK^G

KK^G-category

Assembly

Baum-Connes conjecture Categorical reformulation Example: Γ =

Let \mathfrak{I} be an ideal in KK^G given by

 $\{j \mid j = 0 \text{ in } KK^H$, for every compact subgroup $H \subset G\}$

There is the corresponding projective class \mathcal{P} in KK^G , consisting of the collection of algebras P satisfying

$$\mathfrak{I}(A,B)\circ KK^{G}(P,A)=0$$

for all A, B.

Ryszard Nest

Noncommutativ topology C*-algebras Homology KK^c

KK^G-category

Assembly

Baum-Connes conjecture Categorical reformulation Example: Γ =

Let $\ensuremath{\mathfrak{I}}$ be an ideal in $K\!K^G$ given by

 $\{j \mid j = 0 \text{ in } KK^H$, for every compact subgroup $H \subset G\}$

There is the corresponding projective class \mathcal{P} in KK^G , consisting of the collection of algebras P satisfying

$$\mathfrak{I}(A,B)\circ KK^{G}(P,A)=0$$

for all A, B.

Example

 $1 \ \ \mathfrak{T} = KK^{\Gamma} \text{ for a discrete group } \Gamma$

2 $j \in \mathfrak{I}$ if, for all torsion subgroups $H \subset \Gamma$, j = 0 in KK^H

3 \mathcal{P} coincides with the usual class of proper Γ -algebras.

Ryszard Nest

Noncommutativ topology C*-algebras Homology KK^G

Kasparov product

KK^G-category

Assembly

Baum-Connes conjecture Categorical reformulation Example: $\Gamma = \mathbb{Z}$

Theorem

There are enough projectives in KK^G , and, given any $A \in KK^G$, there exists a projective cover

$$P_A \in \mathcal{P}, \ D_A \in KK^G(P_A, A)$$

universal for morphisms from \mathcal{P} to A

Ryszard Nest

Noncommutativ topology

C*-algebras

Romolog

A.A.

KK^G-category

Assembly

Baum-Connes conjecture Categorical reformulation Example: Γ =

Definition

K-homology Let \underline{E}_G be the universal proper action of G (it exists!)

$$\mathcal{K}_{\mathcal{G}}^{*}(\mathcal{A}) = \lim \{ \mathcal{K}\mathcal{K}_{*}^{\mathcal{G}}(\mathcal{C}(\mathcal{X}), \mathcal{A}) \mid \mathcal{X} \subset \underline{\mathcal{E}}_{\mathcal{G}}, \mathcal{X}/\mathcal{G} \text{ compact} \}$$

In the case when A = C(M) is abelian, this is the usual equivariant K-homology of M.

Theorem

 $K_*(P_A\rtimes G)=K^*_G(A)$ and the assembly for F is given by

$$K_G^*(A) = K_*(P_A \rtimes G) \xrightarrow{D_A} K_*(A \rtimes_{red} G)$$

Ryszard Nest

Noncommutative topology

C*-algebras

Homology

KK^G

Kasnarow

KK^G-category

Assembly

Baum-Connes conjecture

Categorical reformulation

Example: $\Gamma = \mathbb{Z}$

Baum Connes conjecture

The assembly map

$$K^*_G(A) o K_*(A \rtimes_{\mathit{red}} G)$$

is an isomorphism.

Ryszard Nest

Noncommutative topology

C*-algebras

Homology

KK^G

Kasparov p

KK^G-category

Assembly

Baum-Connes conjecture

Categorical reformulation

Baum Connes conjecture

The assembly map

$${\mathcal K}^*_G(A) o {\mathcal K}_*(A \rtimes_{\mathit{red}} G)$$

is an isomorphism.

Status

- 1 True for discrete groups acting properly isometrically on Hilbert spaces
- True for almost connected groups (Connes Kasparov conjecture)
- 3 True for Sp(n,1)
- ④ Open for SL(3,ℤ)
- **5** False for "non-exact groups" (if they exist).

Ryszard Nest

Noncommutativ topology

C*-algebras Homology *KK^G*

KK^G-categor

Assembly

Baum-Connes conjecture

Categorical reformulation Example: $\Gamma =$

Corollaries of BC

- Injectivity of assembly implies Novikov conjecture (Higher L-genera are homotopy invariant)
- Surjectivity of assembly implies Kaplansky conjecture (for torsion free G, C^{*}_{red}(G) has no nontrivial idempotents.

Ryszard Nest

Noncommutative topology

C*-algebras Homology

KK^G

Kasparov product

KK^G-category

Assembly Baum-Connes conjecture

Categorical reformulation Example: $\Gamma = \mathbb{Z}$ In general, it is enough to find the "Dirac" element $D = D_{\mathbb{C}}$, since

$$P_A = P_{\mathbb{C}} \rtimes G$$

Remark

Since $P_{\mathbb{C}}$ is a projective cover, there exists an Adams type spectral sequence computing $K_G^*(A)$

G has a γ -element, if $D_{\mathbb{C}} \in KK^{G}(P_{\mathbb{C}}, \mathbb{C})$ has a left inverse Q, and then $\gamma_{G} = QD_{\mathbb{C}} \in KK^{G}(\mathbb{C}, \mathbb{C})$.

Ryszard Nest

Categorical reformulation

In general, it is enough to find the "Dirac" element $D = D_{\mathbb{C}}$, since

$$P_A = P_{\mathbb{C}} \rtimes G$$

Remark

Since $P_{\mathbb{C}}$ is a projective cover, there exists an Adams type spectral sequence computing $K_{C}^{*}(A)$

G has a γ -element, if $D_{\mathbb{C}} \in KK^G(P_{\mathbb{C}}, \mathbb{C})$ has a left inverse Q, and then $\gamma_{G} = QD_{\mathbb{C}} \in KK^{G}(\mathbb{C}, \mathbb{C}).$

All proofs of BC go via showing that γ_{G} acts as identity on $K_*(\cdot \rtimes_{red} G)$

Ryszard Nest

Noncommutative topology C*-algebras Homology KK^G

Kasparov product

KK^G-categor

Baum-Connes conjecture

Categorical reformulation Example: $\Gamma = \mathbb{Z}$ *G* satisfies the strong Baum-Connes conjecture, if $\gamma_G = 1$. This is equivalent to saying that every object in KK^G is in the localizing category generated by the subcategory of projectives.

Ryszard Nest

Example: $\Gamma = \mathbb{Z}$

• $\Im = Ker \cdot KK^{\mathbb{Z}} \to KK$

Γ = Z

The \mathfrak{I} -projective resolution of \mathbb{C} has the form

The projective cover of $\mathbb{C} \simeq_{KK^{\mathbb{Z}}} \mathcal{K}(l^2(\mathbb{Z}))$ is just the mapping cone

$$c_0(\mathbb{Z}) \to c_0(\mathbb{Z}) \to \Sigma C_{1-\sigma}.$$

But this is just the rotated exact triangle associated to the extension

$$0
ightarrow \Sigma c_0(\mathbb{Z})
ightarrow C_0(\mathbb{R})
ightarrow c_0(\mathbb{Z})
ightarrow 0,$$

the *-homomorphism $C_0(\mathbb{R}) \to c_0(\mathbb{Z})$ given by the evaluation $f \to f|_{\mathbb{Z}}$.

Ryszard Nest

Noncommutative topology C*-algebras

KK^G

Kasparov product

Assembly Baum-Connes conjecture Categorical reformulation

Example: $\Gamma = \mathbb{Z}$

Conclusion

 $P_{\mathbb{C}} = C_0(\mathbb{R}^2)$, $D = \overline{\partial}$, the usual Dirac operator (or rather its phase),

$$\mathcal{K}^*_{\mathbb{Z}}(A) = \mathcal{K}_*((A \otimes \mathcal{C}_0(\mathbb{R}^2)) \rtimes \mathbb{Z}) \to \mathcal{K}_*(A \rtimes \mathbb{Z}),$$

where the assembly map is given by the product with Dirac operator.

The spectral sequence computing $K^*_{\mathbb{Z}}(A)$ becomes the six term exact sequence in K-theory associated to the extension

 $\Sigma(A\otimes c_0(\mathbb{Z}))
times\mathbb{Z}
ightarrow (A\otimes C_0(\mathbb{R}^2))
times\mathbb{Z} woheadrightarrow (A\otimes c_0(\mathbb{Z}))
times\mathbb{Z}$

Since $(A \otimes c_0(\mathbb{Z})) \rtimes \mathbb{Z} \simeq A \otimes \mathcal{K}$, this is just the usual Pimsner-Voiculescu exact sequence.