Shape theories of commutative and non-commutative spaces

Takeshi Katsura

University of Copenhagen & Keio University

17th / August / 2011 SYM lecture University of Copenhagen

Plan

- §0: Introduction
- §1: (Approximative) Absolute (Neighborhood) Retract and (Weakly) (Semi-)Projective (abbreviated by (A)A(N)R and (W)(S)P)
- §2: Commutative spaces
 in Noncommutative Shape theory
- §3: Results on Noncommutative Shape theory

Commutative shape theory

Homotopy theory is not perfect for all compact metric space *X*

approximate a space X by nicer spaces (= absolute neighborhood retracts (ANRs) X_k)

Theorem

Every X is an inverse limit of ANRs $(X_k)_k$: $\varprojlim (X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_k \leftarrow \cdots) \cong X$

study approximating system $(X_k)_k$ instead of original space X (e.g. shape equivalence)

Noncommutative shape theory

Noncommutative space = C*-algebra (contravariantly)

approximate an arbitrary C*-algebra A by nicer (= semiprojective (SP)) C*-algebras A_k

Problem (Blackadar '85)

Is every A a direct limit of SP C*-algebras $(A_k)_k$? $\varinjlim (A_1 \to A_2 \to \cdots \to A_k \to \cdots) \cong A$?

To solve this problem, we want lots of examples of semiprojective C*-algebras.

Recent progress (after '10)

- T. A. Loring and T. Shulman (§1)
- "Semiprojectivity and Asymptotic Morphisms" by S. Eilers and T. Shulman
- D. Enders (§3)
- A. P. W. Sørensen and H. Thiel (and D. Enders) (§2)
- S. Eilers and T. Katsura (§3)
- H. Thiel (§1)
- ...
- T. A. Loring, U. Otogonbayar, T. Shulman,
 A. P. W. Sørensen, T. Katsura and · · ·
-

Commutative spaces

Definition

Cpt: the category of compact spaces

Definition

 $\mathcal{E} \colon \mathfrak{Cpt} \to \mathfrak{Cpt}_*$: Adding disjoint base points

 $\mathcal{F}: \mathfrak{Cpt}_* \to \mathfrak{Cpt}$: forget base points

Identify a pointed compact space (X, *)

with a locally compact space $Y = X \setminus \{*\}$

$$(\mathfrak{Cpt}_* \ni (X,*) \mapsto X \setminus \{*\} \in \mathfrak{LocCpt}$$
 is "bijective")

 $\mathcal{E}: X \mapsto Y = X$: compact space is locally compact

 $\mathcal{F}: Y \mapsto X = Y \cup \{*\}$: one-point compactification

Commutative algebra $C_0(X, *)$

Definition

For
$$(X,*) \in \mathfrak{Cpt}_*$$
 $C_0(X,*) := \{f : X \to \mathbb{C} \mid \text{continuous, } f(*) = 0\}$

$$C_0(X,*) = C_0(Y) \text{ for } Y = X \setminus \{*\}$$

$$C_0(X,*)$$
: commutative \mathbb{C} -algebra with involution * and norm $\|\cdot\|_{\infty}$

$$f^*(x) := f(x) \quad \text{for } f \in C_0(X, *), x \in X$$

 $||f||_{\infty} := \sup_{x \in X} |f(x)| \quad \text{for } f \in C_0(X, *)$

C*-algebras

Definition

```
C*-algebra = \mathbb{C}-algebra with involution * and norm \|\cdot\| satisfying \cdots
```

Definition

A, B: C*-algebra

 $\varphi \colon A \to B$: *-homomorphism \iff

 φ : \mathbb{C} -algebra hom preserving involusion *

Definition

ℂ*-alg: Category of C*-algebras

ℂ*-aIg₁: Category of unital C*-algebras

Noncommutative (NC) spaces

Theorem

$$\mathfrak{Cpt}_* \ni (X,*) \mapsto C_0(X,*) \in \mathfrak{C}^*\text{-alg}$$

(and $\mathfrak{Cpt} \ni X \mapsto C(X) \in \mathfrak{C}^*\text{-alg}_1$): "isomorphism" onto commutative (unital) C^* -algebras

 \mathfrak{C}^* - \mathfrak{alg}^{op} (resp. \mathfrak{C}^* - \mathfrak{alg}^{op}_1) can be called category of NC locally compact (resp. compact) spaces

$$\mathcal{E}: \mathfrak{C}^*-\mathfrak{alg}_1 \ni A \mapsto A \in \mathfrak{C}^*-\mathfrak{alg}$$
: forget the unit $\mathcal{F}: \mathfrak{C}^*-\mathfrak{alg} \ni A \mapsto A^+ \in \mathfrak{C}^*-\mathfrak{alg}_1$: add the unit (= NC one-point compactification)

(Approx.) Absolute (Neighborhood) Retract

metric
$$X$$
 or $(X, *)$: $(A)A(N)R \iff$ for all $Z \subset Y$ and for all $Z \to X$

(Approx.) Absolute (Neighborhood) Retract

$$\mathcal{E} \colon \mathfrak{Cpt} \ni X \mapsto (X \coprod \{*\}, *) \in \mathfrak{Cpt}_{*}$$

$$X \colon (A) \text{ANR} \iff (X \coprod \{*\}, *) \colon (A) \text{ANR}$$

$$(X \coprod \{*\}, *) \colon \text{never AAR (hence never AR)}$$

$$\mathcal{F} \colon \mathfrak{Cpt}_{*} \ni (X, *) \mapsto X \in \mathfrak{Cpt}$$

$$(X, *) \colon A(N)R \iff X \colon A(N)R$$

$$(X, *) \colon AA(N)R \Rightarrow X \colon AA(N)R$$

$$\exists X \text{ AAR and } \exists *_{1}, *_{2} \in X \text{ s.t.}$$

$$(X, *_{1}) \text{ AAR, } (X, *_{2}) \text{ not AANR}$$

$$(X, *) \colon \text{ANR} \iff X \colon \text{ANR}$$

$$\iff (X \coprod \{*'\}, *') \colon \text{ANR}$$

(Weakly) (Semi-)Projective C*-algebra

separable (unital) C*-algebra $A: (W)(S)P \iff$ for all $B \to B/I$ and for all $A \to B/I$

P:
$$B$$
 SP: $\exists B/I_n \leftarrow B$
 $A \longrightarrow B/I$ $A \longrightarrow B/I$

WP: $\forall \varepsilon$ B WSP: $\forall \varepsilon$ $\exists B/I_n \leftarrow B$
 $A \longrightarrow B/I$ $A \longrightarrow B/I$
 $I = \overline{\bigcup_{n=1}^{\infty} I_n}$

Trivial shape, (A)AR and (W)P

X: contractible \Rightarrow *X*: *trivial shape*

Proposition

 $X: AR \iff X: ANR$ and trivial shape

 $X: AAR \iff X: AANR$ and trivial shape

A: contractible \Rightarrow A: trivial shape

Theorem (T.A. Loring, H. Thiel)

 $A: P \iff A: SP \text{ and trivial shape}$

⇔ A: SP and contractible

A: WP ← A: WSP and trivial shape

Approximation problem in NC Shape theory

Theorem (T. A. Loring and T. Shulman)

The cone $C_0((0,1],B)$ of a separable C*-algebra B is an inductive limit of projective C*-algebras.

Theorem (H. Thiel)

A: separable C*-algebra T.F.A.E

- A is an inductive limit of projective C*-algs
- A is an inductive limit of cones
- A is an inductive limit of contractible C*-algs
- A has trivial shape

(cf. X contractible $\Rightarrow X$ inverse limit of ARs)

Commutative spaces in NC Shape theory

Lemma

$$C_0(X,*)$$
: $(W)(S)P \Rightarrow (X,*)$: $(A)A(N)R$
 $C(X)$: $(W)(S)P \Rightarrow X$: $(A)A(N)R$

 D^2 : AR but $C(D^2)$: not even WSP

$$\bigoplus_{n=1}^{\infty} \mathcal{T}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_0(D^2,0) \longrightarrow \bigoplus_{n=1}^{\infty} C(S^1)$$

 \mathcal{T} : Toeplitz algebra (NC 2-Disc) $\mathcal{T} \twoheadrightarrow C(S^1)$

Commutative spaces in NC Shape theory

Theorem (Chigogidze-Dranishnikov, Sørensen-Thiel, Enders)

$$C_0(X,*)$$
: $(W)(S)P \iff (X,*)$: $(A)A(N)R$
and $\dim(X) \le 1$
 $C(X)$: $(W)(S)P \iff X$: $(A)A(N)R$ and $\dim(X) \le 1$

Problem

Is every commutative C*-algebra a direct limit of SP C*-algebras?

Is there an obstraction in K_0 ?

Corollaries on Semiprojective (SP) C*-algebras

Corollary

Y: locally compact

 $F \subset Y$: finite set

 $C_0(Y)$: $SP \iff C_0(Y \setminus F)$: SP

Corollary

Y: locally compact

n: integer

 $M_n(C_0(Y))$: $SP \iff C_0(Y)$: SP

Extension problem

Question 1

When an extension

$$0 \longrightarrow I \longrightarrow A \longrightarrow F \longrightarrow 0$$

is given with $dim(F) < \infty$, then

I is semiprojective $\stackrel{?}{\Longleftrightarrow}$ *A* is semiprojective

Yes if A is commutative (Sørensen-Thiel)

- ← is true (Enders)
- ⇒ is not true in general (Eilers-Katsura)

full corner

Question 2

When B is a full corner in A (e.g. $A = M_2(B)$),

A is semiprojective $\stackrel{?}{\Rightarrow}$ B is semiprojective

Yes if B is commutative and A is special form (Sørensen-Thiel)

No in general (Eilers-Katsura)

Partial answers to 2 Questions are useful for

Problem

Is every C*-alg a direct limit of SP C*-algs?