Euler characteristics of small categories With appiclations to *p*-subgroup categories

Martin Wedel Jacobsen and Jesper Michael Møller

University of Copenhagen

SYM lecture, September 14, 2011

Outline of talk

- Euler characteristics of square matrices
 - Euler characteristic of the poset \mathcal{S}_G^*
 - Euler characteristic of the fusion category \mathcal{F}_G^*
 - ullet Euler characteristic of the orbit category \mathcal{O}_G^*
- Möbius algebras

The Euler characteristic of a category $\mathcal C$ only depends on $\zeta(\mathcal C)$

$$\mathcal{C} \to \zeta(\mathcal{C}) \to \begin{array}{c} k_{\mathcal{C}}^{\bullet} \colon \mathcal{C} \to \mathbf{Q} \\ k_{\bullet}^{\mathcal{C}} \colon \mathcal{C} \to \mathbf{Q} \end{array} \to \sum_{b} k_{\mathcal{C}}^{b} = \chi(\mathcal{C}) = \sum_{a} k_{a}^{\mathcal{C}}$$

Example (The Euler characteristic of a one-object category)

$$\chi(G) = |G|^{-1}$$

Summary of main results [2]

- S_G Brown poset of *p*-subgroups
- \mathcal{F}_G Fusion category of *p*-subgroups
- \mathcal{O}_G Orbit category of p-subgroups

\mathcal{C}	$\chi(\mathcal{C})$	$\chi(\mathcal{C})$
\mathcal{S}_{G}^{*}	$\sum_{[H]>1} -\widetilde{\chi}(\mathcal{S}^*_{\mathcal{O}_{G}(H)})$	$\sum_{K>1} -\mu(K)$
\mathcal{F}_{G}^{*}	$\sum_{[H]>1} \sum_{x \in C_{N_G(H)}(H)} \frac{-\tilde{\tilde{\chi}}(S_{C_{N_G(H)(x)/H}}^*)}{ N_G(H) }$	$\sum_{[K]>1} \frac{-\mu(K)}{ \mathcal{F}_G^*(K) }$
\mathcal{O}_{G}	$\sum_{[H]\geq 1} \frac{-\widetilde{\chi}(\mathcal{S}^*_{\mathcal{O}_{G}(H)})}{ \mathcal{O}_{G}(H) }$	$\frac{1+(p-1)\sum C }{p G }$

Weightings and coweightings for a square matrix ζ

Definition

A weighting for ζ is a column vector (k_{ζ}^{\bullet}) such that

$$(\zeta(a,b))(k_{\zeta}^{b}) = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

A coweighting for ζ is a row vector (k_{\bullet}^{ζ}) such that

$$(k_a^{\zeta})(\zeta(a,b))=\begin{pmatrix}1&\cdots&1\end{pmatrix}$$

- A matrix may have none or many (co)weightings
- If $(\mu(a,b))$ is an inverse to $(\zeta(a,b))$ then

$$\begin{pmatrix} k_{\zeta}^{a} \end{pmatrix} = \begin{pmatrix} \mu(a,b) \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \sum_{b} \mu(a,b) \end{pmatrix} \quad \text{(row sums)}$$

$$\begin{pmatrix} k_{b}^{\zeta} \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \mu(a,b) \end{pmatrix} = \begin{pmatrix} \sum_{a} \mu(a,b) \end{pmatrix} \quad \text{(column sums)}$$

are the unique weighting and coweighting for ζ

- $\zeta = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (not invertible) has weighting and coweighting
- $\zeta = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ has a weighting but no coweighting

If ζ admits both a weighting k_{ζ}^{\bullet} and a coweighting k_{\bullet}^{ζ} then the sum of their values agree

$$\sum_b k_\zeta^b = \sum_b \big(\sum_a k_a^\zeta \zeta(a,b))\big) k_\zeta^b = \sum_a k_a^\zeta \big(\sum_b \zeta(a,b) k_\zeta^b\big) = \sum_a k_a^\zeta$$

Definition (The Euler characteristic of a matrix (Leinster 2008))

$$\sum_{b} k_{\zeta}^{b} = \chi(\zeta) = \sum_{a} k_{a}^{\zeta}$$

If ζ is invertible then

$$\chi(\zeta) = \sum_{b} k_{\zeta}^{b} = \sum_{a,b} \mu(\mathcal{C})(a,b) = \sum_{a} k_{a}^{\zeta}, \quad \mu(\mathcal{C}) = \zeta(\mathcal{C})^{-1}$$

Definition (The incidence matrix of a finite category C)

$$\zeta(\mathcal{C}) = (\zeta(a,b))_{a,b\in\mathcal{C}} \qquad \zeta(a,b) = |\mathcal{C}(a,b)|$$

Definition ((Reduced) Euler characteristic of a category via $\zeta(\mathcal{C})$)

$$\chi(\mathcal{C}) = \chi(\zeta(\mathcal{C})) = \sum_{b} k_{\zeta(\mathcal{C})}^{b} = \sum_{a} k_{a}^{\zeta(\mathcal{C})}$$
$$\widetilde{\chi}(\mathcal{C}) = \chi(\mathcal{C}) - 1$$

Proposition (Invarians under equivalence (Leinster 2008 [3]))

- If there is an adjunction $C \longrightarrow \mathcal{D}$ then $\chi(C) = \chi(\mathcal{D})$
- If C has an initial or terminal element then $\chi(C)=1$
- If C and D are equivalent then $\chi(C) = \chi(D)$

Euler characteristic of a finite poset

Definition (Incidence and Möbius matrix of a finite poset S)

$$\zeta(\mathcal{S}) = \big(\zeta(a,b)\big)_{a,b\in\mathcal{S}} \qquad \zeta(a,b) = \begin{cases} 1 & a \leq b \\ 0 & \text{otherwise} \end{cases}$$
$$\mu(\mathcal{S}) = \zeta(\mathcal{S})^{-1}$$

Definition (The Euler characteristic of a finite poset S)

$$\chi(\mathcal{S}) = \chi(\zeta(\mathcal{S})) = \sum_{a,b \in \mathcal{S}} \mu(\mathcal{S})(a,b) = \sum_{b} k_{\mathcal{S}}^{b} = \sum_{a} k_{a}^{\mathcal{S}}$$
$$k_{\mathcal{S}}^{b} = \sum_{a} \mu(\mathcal{S})(a,b) \qquad k_{a}^{\mathcal{S}} = \sum_{b} \mu(\mathcal{S})(a,b)$$

Example (A poset with a terminal element)

$$\zeta(S) = \begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}$$

$$\mu(S) = \begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\chi(S) = \chi(\zeta(S)) = 1$$

Question

What is the relation between the combinatorial Euler characteristic $\chi(\mathcal{S})$ and the topological Euler characteristic $\chi(\mathcal{BS})$?

Definition (Simplices in a poset)

A k-simplex, $k \ge 0$, (from a to b) is a totally ordered subset of k+1 points (with a as smallest and b as greatest element).

Example $((\zeta - E)^k$ counts k-simplices)

Lemma (Counting simplices in poset S)

$$(\zeta - E)^k(a, b) = \#\{k\text{-simplices from a to b}\}\ (k \ge 0)$$

 $\sum_{a,b} (\zeta - E)^k(a, b) = \#\{k\text{-simplices in }\mathcal{S}\}\ (k \ge 0)$

Topological Euler characteristic of the realization BS

$$\chi(BS) = \sum_{k=0}^{\infty} (-1)^k \#\{k\text{-simplices in }S\}$$

$$= \sum_{k=0}^{\infty} (-1)^k \sum_{a,b \in S} (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \zeta^{-1}(a,b) = \sum_{a,b} \mu(a,b) = \chi(S)$$

Lemma ($\mu(a, b)$ depends only on the interval [a, b])

$$\mu(a,b) = \begin{cases} 1 & a = b \\ \widetilde{\chi}(a,b) & a < b \\ 0 & a \nleq b \end{cases}$$

Proof in case a < b

$$\mu(a,b) = \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= 0 + (-1) + \sum_{k=2}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= -1 + \sum_{k=0}^{\infty} \#\{k \text{-simplices in } (a,b)\} = \widetilde{\chi}(a,b)$$

The Brown subgroup posets S_G and S_G^* at p

Assumptions

G is a finite group and *p* is a prime number

Definition (The posets S_G and S_G^*)

- S_G is the poset of all *p*-subgroups of *G*
- S_G^* is the poset of nonidentity *p*-subgroups of *G*
- $\chi(S_G) = 1$ because S_G has initial element 1
- What is $\chi(\mathcal{S}_G^*)$? Find a weighting and a coweighting!

Definition ($\mu(K)$ for finite p-group K)

$$\mu(K) = \begin{cases} (-1)^n p^{\binom{n}{2}} & K \text{ elementary abelian, } |K| = p^n \\ 0 & \text{otherwise} \end{cases}$$

(Co)Weighting and Euler characteristic for $\mathcal{S}_{\mathcal{G}}$ and $\mathcal{S}_{\mathcal{G}}^*$

$$k_{\mathcal{S}}^{H} = -\widetilde{\chi}(\mathcal{S}_{N_{G}(H)/H}^{*}), \qquad k_{K}^{\mathcal{S}} = -\mu(K)$$
$$\sum_{H>1} -\widetilde{\chi}(\mathcal{S}_{N_{G}(H)/H}^{*}) = \chi(\mathcal{S}_{G}^{*}) = \sum_{K>1} -\mu(K)$$

Reformulation

$$\sum_{H>1} -\widetilde{\chi}(\mathcal{S}_{N_G(H)/H}^*) = 1, \qquad \sum_{K>1} \mu(K) = -\widetilde{\chi}(\mathcal{S}_G^*)$$

The poset \mathcal{S}_G^* knows

- the elementary abelian *p*-subgroups
- the p-radical p-subgroups (Strong Quillen Conjecture!)

Example (Symmetric and alternating groups at p = 2)

Example (Alternating groups at p = 3)

What is known about $\chi(S_G^*)$?

Theorem (Product formula)

$$-\widetilde{\chi}(\mathcal{S}^*_{\prod_{i=1}^n G_i}) = \prod_{i=1}^n -\widetilde{\chi}(\mathcal{S}^*_{G_i})$$

Theorem (Brown 1975, Quillen 1978)

 $-\widetilde{\chi}(\mathcal{S}_{G}^{*})$ is divisible by $|G|_{p}$

Theorem (Quillen 1978)

If G has a nonidentity normal p-subgroup then $\mathcal{S}_G^* \simeq *$

Strong Quillen Conjecture

$$O_pG > 1 \iff \widetilde{\chi}(\mathcal{S}_G^*) = 0$$

What is unknown about $\chi(\mathcal{S}_G^*)!$

- (Euler characteristics of Chevalley groups) Is $-\widetilde{\chi}(\mathcal{S}^*_{G_n(q)}) = (-1)^n q^{\#\{\text{positive roots}\}} \text{ for } G = A, B, C, D, E$?
- (Euler characteristics of alternating groups) Describe the sequence n → χ(S_A*)
- (Original Quillen conjecture 1978) $O_pG>1\iff \mathcal{S}_G^*\simeq *$
- (Strong Quillen conjecture) $O_pG > 1 \iff \widetilde{\chi}(\mathcal{S}_G^*) = 0$

The p-subgroup categories \mathcal{F}_G and \mathcal{F}_G^*

Assumptions

G is a finite group and p is a prime number

The fusion categories \mathcal{F}_G and \mathcal{F}_G^* at p

- \mathcal{F}_G is the fusion category of all p-subgroups of G
- \mathcal{F}_G^* is the fusion category of nonidentity p-subgroups of G
- ullet \mathcal{F}_G is a finite category with morphism sets

$$\mathcal{F}_G(H,K) = C_G(H) \setminus N_G(H,K), \quad \mathcal{F}_G(H) = C_G(H) \setminus N_G(H)$$

- $\chi(\mathcal{F}_G) = 1$ as \mathcal{F}_G has initial element 1
- What is $\chi(\mathcal{F}_G^*)$? We need a weighting and a coweighting!

Example (Skeletal subcategory of $\mathcal{F}_{A_{c}}^{*}$, p=2)

$$k_{\mathcal{F}_{A_6}^*}^{\bullet} = \begin{pmatrix} 0 \\ -1/12 \\ -1/12 \\ 1/4 \end{pmatrix}$$
 $k_{\bullet}^{\mathcal{F}_{A_6}^*} = (1 - 1/3 - 1/3 \ 0 \ 0)$ $\chi(\mathcal{F}_{A_6}^*) = 1/3$

(Co)Weighting and Euler characteristic of fusion category \mathcal{F}_G^*

$$k_{\mathcal{F}}^{H} = \frac{1}{|G|} \sum_{\mathbf{x} \in C_{G}(H)} -\widetilde{\chi}(\mathcal{S}_{C_{N_{G}(H)}(\mathbf{x})/H}^{*}), \quad k_{K}^{\mathcal{F}} = \frac{1}{|G|} \mu(K) |C_{G}(K)|$$

$$\frac{1}{|G|} \sum_{H>1} \sum_{x \in C_G(H)} -\widetilde{\chi}(\mathcal{S}^*_{C_{N_G(H)}(x)/H}) = \chi(\mathcal{F}^*_G) = \sum_{[K]>1} \frac{-\mu(K)}{|\mathcal{F}^*_G(K)|}$$

Reformulation

$$\sum_{H\geq 1} \sum_{\mathbf{x}\in C_G(H)} -\widetilde{\chi}(\mathcal{S}^*_{C_{N_G(H)}(\mathbf{x})/H}) = |G|, \quad \sum_{[K]\geq 1} \frac{-\mu(K)}{|\mathcal{F}^*_G(K)|} = \widetilde{\chi}(\mathcal{F}^*_G)$$

The category \(\mathcal{F}_G^* \) knows the elementary abelian \(p\)-subgroups

What is known about $\chi(\mathcal{F}_G^*)$?

Theorem (Product formula)

$$-\widetilde{\chi}(\mathcal{F}^*_{\prod_{i=1}^n G_i}) = \prod_{i=1}^n -\widetilde{\chi}(\mathcal{F}^*_{G_i})$$

Proposition

- If G has a nonidentity central p-subgroup then $\widetilde{\chi}(\mathcal{F}_G^*)=0$
- ullet $|G|_{p'}\cdot\chi(\mathcal{F}_G^*)\in\mathbf{Z}$
- $\chi(\mathcal{F}_G^*) = \frac{|\{\varphi \in \mathcal{F}_G^*(P) \mid C_P(\varphi) > 1\}}{|\mathcal{F}_G^*(P)|}$ when P, the Sylow p-subgroup, is abelian.
- $\chi(\mathcal{F}_{G}^{*})=\chi(\mathcal{F}_{G}^{a})$ and $\chi(\mathcal{F}_{G}^{*})=\chi(\widetilde{\mathcal{F}}_{G}^{*})$

Example (Alternating groups A_n at p = 2)

n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$	n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$
4	1	1/3	10	55105	18/35
5	5	1/3	11	55935	18/35
6	-15	1/3	12	-288255	389/567
7	-175	1/3	13	1626625	389/567
8	68	41/63	14	23664641	233/405
9	5121	41/63	15	150554625	233/405

Example (The smallest group with $\chi(\mathcal{F}_G^*) > 1$)

There is a group $G = C_2^4 \rtimes H$, where $H = (C_3 \times C_3) \rtimes C_2$, of order |G| = 288 with Euler characteristic $\chi(\mathcal{F}_G^*) = 10/9$ at p = 2.

What is unknown about $\chi(\mathcal{F}_{G}^{*})$

- Are \mathcal{F}_G^* and \mathcal{F}_G^a homotopy equivalent?
- Are \mathcal{F}_{G}^{*} and $\widetilde{\mathcal{F}}_{G}^{*}$ homotopy equivalent?
- Is $\chi(\mathcal{F}_G^*)$ always positive when p divides the order of G?
- Can $\chi(\mathcal{F}_G^*)$ get arbitrarily large?
- What is $\chi(\mathcal{F}_{A_n}^*)$? Does it converge for $n \to \infty$?
- What is $\chi(\mathcal{F}^*_{\mathsf{SL}_n(\mathbf{F}_q)})$?
- Is there a $|G|_{p'}$ -fold covering map $E \to B\mathcal{F}_G^*$ where E is (homotopy) finite and $\chi(E) = |G|_{p'}\chi(\mathcal{F}_G^*)$?

Categories of centric subgroups

Definition

The *p*-subgroup $H \leq G$ is *p*-centric if $p \nmid |C_G(H): C_H(H)|$

Example (Euler characteristics of centric subgroup categories for alternating groups at p=2)

n	4	5	6	7	8	9	10	11
$A_n \chi(\mathcal{L}_{A_n}^c)$	1	5	-15	-105	65	585	11745	129195
$\chi(\mathcal{S}_{A_n}^c)$	1	5	-15	–175	65	585	11745	107745
$\chi(\mathcal{L}_{A_n}^c)$	$\chi(\mathcal{L}_{A_n}^c)$ 1/12		-1/24		13/4032		29/4480	
$\chi(\mathcal{F}_{A_n}^c)$ 1/3		1/3		13/63		19/105		
$\chi(\widetilde{\mathcal{F}}_{A_n}^c)$ 1/3		/3	1/3		13/63		19/105	

Weighting and Euler characteristic for $\widetilde{\mathcal{F}}_{G}^{c}$

$$\begin{split} |G\colon N_G(H)|k_{\widetilde{\mathcal{F}}_G^c}^H &= \frac{-\widetilde{\chi}\big(\mathcal{S}_{\widetilde{\mathcal{F}}_G^c(H)}^*\big)}{|\widetilde{\mathcal{F}}_G^c(H)|} \in \mathbf{Z}_{(p)} \\ \chi(\widetilde{\mathcal{F}}_G^c) &= \sum_{[H]} \frac{-\widetilde{\chi}\big(\mathcal{S}_{\widetilde{\mathcal{F}}_G^c(H)}^*\big)}{|\widetilde{\mathcal{F}}_G^c(H)|} \end{split}$$

• The category $\widetilde{\mathcal{F}}_G^c$ knows the p-selfcentralizing \mathcal{F}_G -radical p-subgroups

Conjecture

$$\chi(\mathcal{F}_G^c) = \chi(\widetilde{\mathcal{F}}_G^c)$$

The p-subgroup categories \mathcal{O}_G and \mathcal{O}_G^*

Assumptions

G is a finite group and *p* is a prime number

The orbit categories $\mathcal{O}_G^{}$ and \mathcal{O}_G^* at p

- O_G is the orbit category of all p-subgroups of G
- \mathcal{O}_G^* is the orbit category of nonidentity *p*-subgroups of *G*
- \bullet \mathcal{O}_G is a finite category with morphism sets

$$\mathcal{O}_G(H, K) = N_G(H, K)/K, \quad \mathcal{O}_G(H) = N_G(H)/H$$

Weighting and Euler characteristic of orbit category \mathcal{O}_G

$$|G: N_G(H)|k_{\mathcal{O}}^H = \frac{-\widetilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)}{|\mathcal{O}_G(H)|}$$
$$\sum_{[H]} \frac{-\widetilde{\chi}(\mathcal{S}_{\mathcal{O}_G(H)}^*)}{|\mathcal{O}_G(H)|} = \chi(\mathcal{O}_G) = \frac{1 + (p-1)\sum |C|}{p|G|}$$

Corollary

$$|G|_{\rho'}|G:N_G(H)|k_{\mathcal{O}}^H\in \mathbf{Z},\quad (1-\rho)\sum_{1\leq \mathcal{C}\leq G}|\mathcal{C}|\equiv 1 \bmod \rho |G|_{\rho}$$

• The alertcategory \mathcal{O}_G knows the p-radical p-subgroups

Möbius algebras

Assumption

 $\mathcal C$ is a finite category and $[\mathcal C]$ is the finite set of isomorphism classes of objects of $\mathcal C$.

Definition (The rational Möbius algebra of C)

 $\mathit{M}([\mathcal{C}]; \mathbf{Q})$ is the \mathbf{Q} -algebra with vector space basis $[\mathcal{C}]$ and

$$|\mathcal{C}(a,b\cdot c)| = |\mathcal{C}(a,b)||\mathcal{C}(a,c)|$$

Example (Burnside rings are special cases)

The Burnside ring of G is the Möbius algebra of the full orbit category $\overline{\mathcal{O}_G}$ of G. The p-Burnside ring of G is the Möbius algebra of the orbit category \mathcal{O}_G .

$$\mathcal{C} = \mathcal{S}_G, \mathcal{T}_G, \mathcal{F}_G, \mathcal{L}_G, \widetilde{\mathcal{F}}_G^c, \dots$$
 are other possibilities.

Unit, primitive idempotents, Möbius function $[\mu] = \zeta([\mathcal{C}])^{-1}$

$$1 = \sum_{[a]} [a] k_{[\mathcal{C}]}^{[a]}, \qquad e_{[b]} = \sum_{[a]} [a] \mu([\mathcal{C}])([a], [b])$$

The product $K_1 \cdot K_2$ in the Möbius algebra $M([\mathcal{C}]; \mathbf{Q})$ is

$$\begin{array}{c|c} \mathcal{S}_{G} \\ \mathcal{T}_{G} \end{array} & \sum_{\substack{g \in G \\ K_{1} \cap K_{2} \\ \sum_{g \in G} [K_{1}^{g} \cap K_{2}]}} K_{1} \cap K_{2} \\ \mathcal{F}_{G} \end{array} \\ \begin{array}{c|c} \frac{1}{|G|} \sum_{H \in \mathrm{Ob}(\mathcal{F}_{G})} [H] \sum_{(g_{1},g_{2}) \in G \times G} \sum_{K \in [H,K_{1}^{g_{1}} \cap K_{2}^{g_{2}}]} \frac{\mu(H,K)}{|C_{G}(K)|} \\ \mathcal{L}_{G} & \frac{1}{|G|} \sum_{H \in \mathrm{Ob}(\mathcal{F}_{G})} [H] \sum_{(g_{1},g_{2}) \in G \times G} \sum_{K \in [H,K_{1}^{g_{1}} \cap K_{2}^{g_{2}}]} \frac{\mu(H,K)}{|O^{p}C_{G}(K)|} \\ \widetilde{\mathcal{F}}_{G}^{c} & \sum_{\substack{g \in K_{1} O^{p}C_{G}(K_{1}) \setminus G/K_{2} O^{p}C_{G}(K_{2})}} [K_{1}^{g} \cap K_{2}] \end{array}$$

Corollary (Integral product for Möbius algebras)

Multiplication in the rational Möbius algebra $M([\mathcal{C}]; \mathbf{Q})$ restricts

$$\textit{M}([\mathcal{C}];\textbf{Z})\times\textit{M}([\mathcal{C}];\textbf{Z})\rightarrow\textit{M}([\mathcal{C}];\textbf{Z}),\quad \mathcal{C}=\mathcal{S}_{\textit{G}},\mathcal{L}_{\textit{G}},\mathcal{F}_{\textit{G}},\mathcal{O}_{\textit{G}},\mathcal{O}_{\textit{G}}^{\textit{c}},\widetilde{\mathcal{F}}_{\textit{G}}^{\textit{c}}$$

Corollary

The p-local Möbius algebras $M([\mathcal{C}]; \mathbf{Z}_{(p)})$, $\mathcal{C} = \mathcal{O}_G, \mathcal{O}_G^c, \widetilde{\mathcal{F}}_G^c$, are commutative unital algebras.

Theorem (Diaz-Libman 2009 [1])

There is an isomorphism of algebras

$$\varphi([\mathcal{O}_G^c], [\widetilde{\mathcal{F}}_G^c]) \colon \textit{M}([\mathcal{O}_G^c]; \mathbf{Z}_{(p)}) \xrightarrow{\cong} \textit{M}([\widetilde{\mathcal{F}}_G^c]; \mathbf{Z}_{(p)})$$

given by an upper triangular nonnegative integral matrix.

Example $(M([\mathcal{F}_G; \mathbf{Q}) \text{ for } G = \mathrm{SL}_2(\mathbf{F}_3), |G| = 24, \text{ at } p = 2)$

Note that coefficient sum always equals 1.

$$1=rac{2}{3}H_2+rac{1}{4}H_3+rac{1}{12}H_4$$
 and the Euler characteristic $\chi(\mathcal{F}_G^*)=1$

References

- Antonio Díaz and Assaf Libman, *The Burnside ring of fusion systems*, Adv. Math. **222** (2009), no. 6, 1943–1963. MR 2562769 (2011a:20039)
- Martin W. Jacobsen and Jesper M. Møller, *Euler characteristics of p-subgroup categories*, arXiv:1007.1890v3.
- Tom Leinster, *The Euler characteristic of a category*, Doc. Math. **13** (2008), 21–49. MR MR2393085