Phillips Syn lecture (C^*-algs associated to dynamical systems)

Crossed products

G a discrete group, A unital C^*-alg

$x : G \rightarrow \text{Aut}(A)$ is an action

$C^*(G, A, x)$ is the "universal" C^*-alg generated

a copy of A and unitaries $u_g | g \in G$ s.

satisfying $u_g a u_g^* = x_g(a)$ for $a \in A$, $g \in G$

Example (main interest)

$A = C(\mathcal{X})$ for \mathcal{X} a compact space.

If G acts on \mathcal{X} then $x_g(f)(x) = f(g^{-1}x)$

is an action on A.

Example

$G = \mathbb{Z}/n$, $\mathcal{X} = \{1, 2, \ldots, n\}$ and G

acts on \mathcal{X} by translation
Let $\mathbf{P}_n = \times_{i \leq n}$ then $\mathbf{P}_n \mathbf{P}_k = \mathbf{P}_{n+k}$ (sum is taken mod n).

So the unitaries u_i satisfy

$$u_i \mathbf{P}_n u_i^* = \mathbf{P}_n$$

Let this act on $\mathcal{F}(\mathbf{X})$,

$$\mathbf{P}_m \mathbf{S}_n = \begin{cases} \mathbf{S}_{k} & \text{if } k = m \\ 0 & \text{otherwise} \end{cases}$$

Let $\mathbf{P}_n u_i$ act on \mathbf{S}_m. First send it to \mathbf{S}_m,

then get 0 if $l+m + k$ or 0 if $l+m = k$.

Thus, these are matrix units

So the outcome is, that the crossed product is $\mathbb{M}(\mathcal{C})$.

Example

Now let \mathbb{Z} act on $\{0, 1, \ldots, n-1\}$ by translation

Let u be the unitary that implements the action.

Then u^n is central.
One then gets a copy of
\[c^*(n\mathbb{Z}) \cong c^*(S^1) \leq \mathbb{Z}(c^*(\mathbb{Z}, X)) \]
\[\uparrow \]
tensor transform

So \(c^*(\mathbb{Z}, X) \) is the section of some bundle over \(S^1 \) with fibers \(M_n \). Must be trivial, since all such bundles are trivial.

Let \((X, \mu)\) be a standard probability space
\[h: X \to X \] is an ergodic measure preserving transformation.

If \(E \subseteq X \) is \(h \)-invariant then \(\mu(E) = 0 \) or \(\mu(X \setminus E) = 0 \).

In this case there is a von Neumann algebra crossed product of \(\mathbb{Z} \) acting on \(L^\infty(X, \mu) \).
Call it \(W^*(\mathbb{Z}, X) \).
\(\text{\(c^*\)-algebra crossed product is the norm closure} \)

of (finite) sums \(\sum_{g \in \Gamma} \tau_g \otimes a_g \) w/ \(a_g \in A \).

and \(a_g = 0 \) for all but finitely many \(g \).

the \(v \)-Neumann crossed product is the

weak-topology closure of such sum.

One can show, that \(W^*(\mathbb{Z},X) \) will be a

hyperfinite II\(_1\)-factor. Since there is only one

such factor, they are all the same. So that is

why we don't really look at \(W^*(\mathbb{Z},X) \).

The \(v \)-Neumann theory is more interesting for

non-amenable gaps. At least some such gaps.
Rochlin Lemma

\[\forall \alpha \geq 0 \exists \alpha, \forall E \in X \exists A_{n2} \rho_{n1}(E) \text{ are disjoint and} \]

\[\mu(\{ E \setminus \bigcup_{n=0}^{\infty} \rho_{n1}(E) \}) < \varepsilon \]

Proof that \(\rho_{n2}(E, \alpha) \) is hyperfinite:

Choose \(n \gg n \), then consider the action of

a on function vanishing on \(\alpha \)

\[E = \rho_{n1}(E) \cup \cdots \cup \rho_{n-1}(E) \]

then it looks the same as if we are acting with

\[\sum_{k=-n}^{n} k\rho_{k}(E) \] (coming from the action of \(Z_n \))

If take \(p = \chi_E \) on \(\prod_{k \in \mathbb{Z}} \rho_{n1}(E) = S \) then \(p \rho_{n1}(E) \)

looks like something in \(\mathcal{W}^*(Z_n, S) \). Since we are using a weak topology \(\rho_{n1}(E) \) is small, so

\[\mathcal{W}^*(Z_n, S) \sim M_{\rho_{n1}(E, \alpha)} \]

and this is hyperfinite.
Back to C^∞-case.

Need $y \in \tilde{\Sigma}$ s.t. $x \in C(\tilde{\Sigma})$ for many Σ.

After finite sets the best choice is the cantor set, $h: \mathbb{R} \to \mathbb{R}$ minimal.

Pick some "small" set Y compact open,

$$ (\text{will use } y_1 \supseteq y_2 \supseteq \ldots \supseteq y_0) $$

The lower line is a partition of Y into compact open subsets (i.e. $y_s \in C(\tilde{\Sigma})$ for all s).

The whole is a partition of $\tilde{\Sigma}$ into compact open subsets.
to construct Y, put

$$Y = \gamma \cap h^{-n}(Y)$$

with n, chosen using so called "first return times".

Consider $A = C^\infty(\Xi, X, h)$

$A_Y \subset A$ is generated by $C(\Xi)$ and

$C(\Xi - Y)\hat{\otimes}$ ("magic" acting unitary) functions vanishing on Y.

$$A_Y \cong \bigoplus_{s \in \Gamma} M_{n_s} \left(C(\gamma_s) \right)$$

AF-algebra

$$A_{Y_0} = \bigvee A_Y \quad (\neq A \text{ but is } \text{"large"})$$

AF-algebra
Putnam has used clever tricks to get a direct limit decomposition

\[A \sim C(\beta_0) \oplus M_3 \oplus C(S') \]

Even without using that, \(A_{\mathbb{Q},\beta} \), being a nice \(\mathfrak{c} \)-algebra can be used to get strong info about \(A \) (e.g. recent results by Sato).

Let us look at \(X \) not totally disconnected.

Take \(Y \) closed, \(\text{int}(Y) \neq \emptyset \).

\(Y_1 \) is closed

\(Y_2 \) is closed \& open

We can still form \(A_Y \). It is a sub-algebra of \(\oplus M_3 (C(Y)) \).

Suppose that there are enough invariant measures that we can expect \(A = C^\ast (\mathbb{Z}, \mathbb{Z}, h) \) to have tracial rank zero.
(One needs to get \(Y \) s.t. \(\mu(\partial Y) = 0 \) for all invariant measures) of dim \(d \).

Suppose that \(X \) is a manifold, \(\text{h} \in C^0 \).

Choose \(Y \) s.t. \(\partial Y \) is a submanifold.\(\text{distinct} \)

More over for all \(1 \leq c \) and all \(n_1, n_2, \ldots, n_c \)

\[h^{n_1}(\partial Y), \ldots, h^{n_c}(\partial Y) \]

are mutually transverse.

Then for \(n_1, \ldots, n_c \) \(\text{distinct} \)

\[h^{n_1}(\partial Y) \cap \cdots \cap h^{n_c}(\partial Y) = \emptyset \]

Now for \(f = \sum_{n} x_n h^{n}(\partial Y) \) we have \(0 \leq f \leq c \) and

\[d = \int_{\partial Y} d\mu = \sum_{n} x_n d\mu(\partial Y) \]

so \(\mu(\partial Y) = 0 \).