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Operator Algebras

C = the field of complex numbers (scalars)

Mn(C) = the n × n matrix algebra (“non commutative scalars”)

B(H) = the ∗-algebra of bounded (continuous) linear operators on H
H = a Hilbert space (mostly separable & infinite-dimensional)

〈Tη, ξ〉 = 〈η,T ∗ξ〉 for T ∈ B(H) and ξ, η ∈ H.

Definition

A ∗-subalgebra A ⊂ B(H) is called

a C∗-algebra if closed under the norm topology;

a von Neumann algebra if closed under the weak-operator-topology.

Examples:

C0(X ) ⊂ B(L2(X , µ)) commutative C∗-algebras.

L∞(X , µ) ⊂ B(L2(X , µ)) commutative vN algebras.

The (reduced) group C∗-algebra C ∗λΓ ⊂ B(`2Γ)
and the group vN algebra vN(Γ) ⊂ B(`2Γ).
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Group von Neumann algebras

The group vN algebra:

vN(Γ) := WOT-closure of λ(CΓ) = {λ(f ) : ‖λ(f )‖ <∞} ⊂ B(`2Γ),

where λ : Γ y `2Γ, λgδx = δgx ; λ : CΓ→ B(`2Γ), λ(f )ξ = f ∗ ξ.

Γ is abelian =⇒ `2Γ ∼= L2( Γ̂ ) and vN(Γ) ∼= L∞( Γ̂ ) ∼= L∞[0, 1].

vN(Γ) is a II1-factor ⇐⇒ CΓ has a trivial center
⇐⇒ Γ is ICC (Infinite Conjugacy Classes).

Examples of ICC groups: S∞ =
⋃

n Sn, Fr , PSL(n,Z), . . ..

Theorem (Murray–von Neumann 1943)

vN(Γ) are all isomorphic for countable locally finite ICC groups.

vN(S∞) 6∼= vN(Fr ).

OPEN PROBLEM: ¿¿ vN(Fr ) 6∼= vN(Fs) for r 6= s ∈ {2, 3, . . . ,∞} ??
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Classification Problem

Classification Problem
geared for rigidity phenomena

Classification of (group) von Neumann algebras is very subtle. E.g.,

Theorem (Dykema 1993, Oz. 2006)

vN(F∞ ∗ (F∞ × Z)∗n), n = 1, 2, . . . , are mutually isomorphic,
while vN(F∞ ∗ (F∞ ×S∞)∗n) are mutually non-isomorphic.

Moreover, Hjorth’s theory of turbulence + Popa’s rigidity theorem imply

Theorem (Sasyk–Törnquist 2009)

von Neumann algebras are not classifiable “by countable structures.”
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What do we classify?

Γ countable discrete group
(X , µ) standard probability measure space

Γ y (X , µ) (ergodic) measure preserving action

Γ y X is ergodic if A ⊂ X and ΓA = A ⇒ µ(A) = 0, 1.
 We consider only (X , µ) ∼= ([0, 1], Lebesgue) or X = {pt}.

Γ y X is essentially-free if µ({x : gx = x}) = 0 ∀g ∈ Γ \ {1}.

Examples:

Γ = Z, S∞ =
⋃

n Sn, Fr (2 ≤ r ≤ ∞), SL(n,Z), . . .

T : X → X invertible p.m.p. transformation,

SL(n,Z) y Tn = Rn/Zn,

Γ y G/Λ, Γ,Λ ≤ G lattices,

Γ y (X0, µ0)Γ, Bernoulli shift

Instead of X/Γ, we consider X o Γ.
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Group measure space constrctn (Murray & vN ’36 ’43)

Instead of X/Γ, we consider X o Γ.

Γ y (X , µ) p.m.p.

σ : Γ y L∞(X , µ)
σg (f )(x) = f (g−1x)∫
σg (f ) dµ =

∫
f dµ

The unitary element ug = σg ⊗ λg ∈ B(L2(X )⊗ `2(Γ)) satisfies

ug f u∗g = σg (f )

for all f ∈ L∞(X , µ), identified with f ⊗ 1 ∈ B(L2(X )⊗ `2(Γ)).
We encode the information of Γ y X into a single vN algebra

vN(X o Γ) := {
finite∑
g∈Γ

fg ug : fg ∈ L∞(X )}′′ ⊂ B(L2(X )⊗ `2(Γ)).

vN(X o Γ) is same as the crossed product vN algebra L∞(X ) o Γ.
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Group measure space constrctn (Murray & vN ’36 ’43)

vN(X o Γ) = {
∑
g∈Γ

fg ug : fg ∈ L∞(X )}, ug f u∗g = σg (f )

vN(X o Γ) is a vN algebra of type II1, with the trace τ given by

τ(
∑
g

fg ug ) = 〈
∑
g

fg ug (111⊗ δ1), (111⊗ δ1)〉 =

∫
f1 dµ.

It follows τ(xy) = τ(yx).  a generalization of (Mn(C), 1
nTr)

The subalgebra L∞(X ) ⊂ vN(X o Γ) has a special property.

Definition

A von Neumann subalgebra A ⊂ M is called a Cartan subalgebra
if it is a maximal abelian subalgebra such that the normalizer

N (A) = {u ∈ M : unitary uAu∗ = A}
generates M as a von Neumann algebra.

 Somewhat looks like a normal abelian subgroup.
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Orbit Equivalence Relation

Theorem (Singer 1955, Dye, Krieger, Feldman–Moore 1977)

Let Γ y X and Λ y Y be ess-free p.m.p. actions, and

θ : (X , µ)→ (Y , ν)

be an isomorphism. Then, the isomorphism

θ∗ : L∞(Y , ν) 3 f 7→ f ◦ θ ∈ L∞(X , µ)

extends to a ∗-isomorphism

π : vN(Y o Λ)→ vN(X o Γ)

if and only if θ preserves the orbit equivalence relation:

θ(Γx) = Λθ(x) for µ-a.e. x.

The orbit equivalence relation of Γ y X is

RΓyX := {(x , y) ∈ X × X : ∃g ∈ Γ s.t. gx = y} ⊂ X × X ,

a Borel equivalence relation with countable classes.

E.g., (Γ y G/Λ) ∼=OE (Γ\G x Λ) for lattices Γ,Λ ≤ G of same covolume.
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So, what is the classification problem?

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X o Γ)

vN

vN(X o Γ)

GP

Γ

vN

vN(Γ)

To what extent do vN/OE
remember OE/GA/GP?
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Amenable groups

Definition

A group Γ is amenable if ∃ a finitely additive measure m on 2Γ which is
translation invariant: m(gS) = m(S) for g ∈ Γ and S ⊂ Γ; or equivalently,
if every action of Γ on a compact convex space has a fixed point.

Examples:

finite and locally finite groups, e.g., S∞ =
⋃

n Sn,

abelian groups and groups with subexponential growth,

nilpotent and solvable groups,

closed under subgroups, quotients, extensions and limits.

Non-example: Any group which contains the free group F2 = 〈a, b〉.

F2 = A+ t A− t B̃+ t B̃−,

A+ = {a · · · }, A− = {a−1 · · · }, B+ = {b · · · }, B− = {b−1 · · · };
B̃+ = B+ \ {b, b2, . . .}, B̃− = B− ∪ {1, b, b2, . . .}.

 Banach–Tarski Paradox: F2 = A+ t a · A− = B̃+ t b · B̃−.
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Lack of rigidity (vN)

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X o Γ)

vN

vN(X o Γ)

Theorem (Hakeda–Tomiyama, Sakai 1967)

Γ is amenable ⇔ vN(Γ) and/or vN(X o Γ) is amenable (injective).

Theorem (Connes 1974, Ornstein–Weiss, C–Feldman–W 1981)

Amenable vN and OE are unique modulo center.

Big Open Problem (Murray & von Neumann 1943)

vN(Fr ) 6∼= vN(Fs) ?

They are either all isomorphic for r = 2, 3, . . . ,∞, or all non-isomorphic
(Voiculescu, Rădulescu, Dykema, around 1990).
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Lack of rigidity (OE)

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X o Γ)

vN

vN(X o Γ)

Theorem (Connes–Jones 1982)

OE vN is not one-to-one,
i.e. ∃ a II1-factor with non-conjugate Cartan subalgebras.

Example (Oz–Popa 2008)

M = vN(Z2
p o (Z2 o SL(2,Z)))

has (at least) two Cartan subalgebras L∞(Z2
p) and vN(Z2).

Speelman–Vaes 2011:
∃ a II1-factor where classification of Cartan
subalgebras is impossible.
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Some rigidity phenomena

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X o Γ)

vN

vN(X o Γ)

Theorem (Furman 99, Monod–Shalom, Popa, Kida, Popa–Vaes,. . . )

Some OE fully remembers GA.
E.g., SL(3,Z) y T3, Γ y [0, 1]Γ for many Γ, MCG(Σ) y (X , µ),. . .

Theorem (Oz–Popa 2007, Chifan–Sinclair 2011, Popa–Vaes 2011-12)

Some vN fully remembers OE, i.e., ∃ a (non-amenable) II1-factor with a
unique Cartan subalgebra (up to unitary conjugacy).
In fact, every action of a free (hyperbolic) group is such an example.

Theorem (Popa–Vaes 2009, Ioana 2010, Chifan–Peterson 2010, . . . )

Some vN fully remembers GA. E.g., Γ y [0, 1]Γ for ICC + (T) groups Γ.
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Go back from OE to GA

Given an orbit equivalence relation
RΓyX = {(x , y) ∈ X × X : ∃g ∈ Γ s.t. gx = y} ⊂ X × X ,

find Γ and Γ y X .
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From OE to Cocycle (after Zimmer)

Suppose (Γ y X ) ∼=OE (Λ y Y ), i.e. ∃ θ : X
∼→ Y such that

θ(Γx) = Λθ(x) for µ-a.e. x .

Define α : Γ× X → Λ by

θ(gx) = α(g , x)θ(x).

Then, α satisfies the cocycle identity:

α(h, gx)α(g , x) = α(hg , x).

txt
gx

thgx
	 α(g , x)

9
α(h, gx)

α(hg , x)

A cocycle α is a homomorphism if ess. independent of the second variable.
Cocycles α and β are equivalent if ∃ φ : X → Λ such that

β(g , x) = φ(gx)α(g , x)φ(x)−1.

Theorem (Zimmer)

(Γ y X ) ∼= (Λ y Y ) if and only if α is equivalent to a homomorphism.
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From Cocycle to Group Action

Theorem (Cocycle Superrigidity)

With some assumption on Γ y X (and not on Λ), any cocycle

α : Γ× X → Λ

is equivalent to a homomorphism β.

Applied to the Zimmer cocycle, one obtains (virtual) isomorphism
(Γ y X ) ∼= (Λ y Y ) via the homomorphism β : Γ→ Λ.

Examples

Γ higher rank lattice + Λ simple Lie group (Zimmer 1981)

Γ Kazhdan (T) / product + Γ y X Bernoulli (Popa 2005-06)

Γ Kazhdan (T) + Γ y X profinite (Ioana 2008)

Γ ≤ SL(n ≥ 5,R) and Γ y Rn (Popa–Vaes 2008)

 Many applications to measured group theory & descriptive set theory.
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Go back from vN to OE

Given a group measure space von Neumann algebra vN(X o Γ),
locate the position of the Cartan subalgebra L∞(X ) in vN(X o Γ).
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Cayley graph of F2

The Cayley graph of F2 = 〈a, a−1, b, b−1〉 is an oriented tree.
F2 acts on the edge set E from the left: π : Γ y `2E ,

b(g) := signed char fnctn on the edge path [e, g ] ∈ `2E .

Then, ‖b(g)‖2 = |g | and b satisfies the cocycle condition.

I I

N

N

q qa−1 qe qa qa2
q qab

q q
ab−1

q q
b

q

q qb−1q

q

q q e��
�
�
�
p

-

b(g)

q g@
@

@
@
@
q gh

I π(g)b(h)
I

b(gh)

b(gh) = b(g) + π(g)b(h)

It follows that ‖b(g)− b(h)‖2 = ‖π(g)
(
b(g−1h)

)
‖2 = |g−1h|.
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Noncommutative harmonic analysis

Theorem (Haagerup 1979)

φt(g) = exp(−t|g |) are positive definite on Fr and the multipliers

mφt : vN(Fr ) 3 λ(f ) 7→ λ(φt f ) ∈ vN(Fr )

are completely positive contractive maps which converge to id as t ↘ 0.

Moreover, φt can be perturbed to a sequence ψn of finitely supported
functions on Fr such that ψn → 1 and lim sup ‖mψn‖cb = 1.

Compare this with Fejér’s Theorem:

φn(k) = (1− |k|n ) ∨ 0 are positive definite on Z and

mφk
: C (T) 3 h ∼

∑
k akzk 7→

∑
k φn(k)akzk

are positive contractive maps which converge to id.

A group Γ is weakly amenable if it satisfies a similar property as above.

Ex.:
Rank one Lie group lattices (. . . , Cowling–Haagerup,. . . 80s),
Hyperbolic groups (Oz. 08),
F.d. CAT(0)cubecplx(Niblo–Reeves,Guentner–Higson&Mizuta 07).
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Rigidity results for Cartan subalgebras

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X o Γ)

vN

vN(X o Γ)

Theorem (Voiculescu 94, OP 07, Chifan–Sinclair 11, PV 11-12)

Let Γ be an ICC non-amenable free group, hyperbolic group, or
CAT(0) cube cplx grp whose hyperplane stabilizers are all amenable, etc.;
and Γ y (X , µ) be any p.m.p. ergodic ess.-free action.

vN(Γ) does not have a Cartan subalgebra.
Hence vN(Γ) 6∼= vN(Y o Λ) for any Λ y (Y , ν).

L∞(X ) is the unique Cartan subalgebra of vN(X o Γ).

Combined with Gaboriau’s theory of cost, this yields

vN(X o Fr ) 6∼= vN(Y o Fs) for any r 6= s.

OPEN PROBLEM: ¿¿ vN(Fr ) 6∼= vN(Fs) for r 6= s ∈ {2, 3, . . . ,∞} ??
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