What is Index Theory good for: obstructions to positive scalar curvature

Lunch Seminar
Kobenhavn, Mar 2016

Thomas Schick

Universität Göttingen

March 2016
What are the possibilities for *geometry* on a given *topology*?

“Geometry here means: curvature features of *Riemannian* geometry.
Motivation:

What are the possibilities for geometry on a given topology?

“Geometry here means: curvature features of Riemannian geometry.
Motivation:

What are the possibilities for geometry on a given topology?

“Geometry here means: curvature features of Riemannian geometry.

“Topology” means: we fix a (smooth compact boundaryless) manifold M, like S^n, $T^n = S^1 \times \cdots \times S^1$, ...
More specifically: what are the possibilities for its \textit{scalar curvature}?
Scalar curvature

More specifically: what are the possibilities for its *scalar curvature*?

In higher dimensions: $\text{scal}(x)$ is the average (integral) of the scalar curvature of all 2-d surfaces through the point x.
Scalar curvature in higher dimension.

The scalar curvature can be computed as a trace of the curvature tensor
\[\text{scal} = \sum_{ij} R^j_{iji}. \] Alternatively (feature taken as def):

Definition

Given a Riemannian manifold \((M, g)\), scalar curvature \(\text{scal} : M \to \mathbb{R}\) satisfies

\[
\frac{\text{vol}(B_\epsilon(x) \subset M)}{\text{vol}(B_\epsilon(x) \subset \mathbb{R}^m)} = 1 - \frac{\text{scal}(x)}{6m + 2} \epsilon^2 + O(\epsilon^4).
\]
Scalar curvature in higher dimension.

The scalar curvature can be computed as a trace of the curvature tensor $\text{scal} = \sum_{ij} R_{ij}^i$. Alternatively (feature taken as def):

Definition

Given a Riemannian manifold (M, g), *scalar curvature* $\text{scal} : M \rightarrow \mathbb{R}$ satisfies

$$\frac{\text{vol}(B_\epsilon(x) \subset M)}{\text{vol}(B_\epsilon(x) \subset \mathbb{R}^m)} = 1 - \frac{\text{scal}(x)}{6m + 2} \epsilon^2 + O(\epsilon^4).$$

It features in Einstein’s general relativity (cosmological constant).
Scalar curvature in higher dimension.

The scalar curvature can be computed as a trace of the curvature tensor $\text{scal} = \sum_{ij} R^j_{iji}$. Alternatively (feature taken as def):

Definition

Given a Riemannian manifold (M, g), *scalar curvature* $\text{scal}: M \to R$ satisfies

$$\frac{\text{vol}(B_\epsilon(x) \subset M)}{\text{vol}(B_\epsilon(x) \subset \mathbb{R}^m)} = 1 - \frac{\text{scal}(x)}{6m + 2} \epsilon^2 + O(\epsilon^4).$$

It features in Einstein’s general relativity (cosmological constant).
Scalar curvature in higher dimension.

It features in Einstein’s general relativity (cosmological constant).
Theorem (Gauß-Bonnet)

If F is a 2-dimensional compact Riemannian manifold without boundary, then

$$\int_F \text{scal}(x) \, d\text{vol}(x) = 2\pi \chi(F).$$
Theorem (Gauß-Bonnet)

If F is a 2-dimensional compact Riemannian manifold without boundary, then

$$\int_{F} \text{scal}(x) \, d\text{vol}(x) = 2\pi \chi(F).$$

Corollary: If $\text{scal} > 0$ on surface F implies the Euler characteristic of F is positive, i.e. $F = \mathbb{S}^2$, $\mathbb{R}P^2$.
Positive scalar curvature and Gauß-Bonnet

Theorem (Gauß-Bonnet)

If F is a 2-dimensional compact Riemannian manifold without boundary, then

$$
\int_{F} \text{scal}(x) \, d\text{vol}(x) = 2\pi \chi(F).
$$

Corollary

If $\text{scal} > 0$ on surface F, it implies the Euler characteristic of F is positive.
Basic Dirac operators

Dirac: Differential operator D as square root of matrix Laplacian (using Pauli matrices).

1D: $\Delta = -\partial_x^2$; $D = i\partial_x$

higher D: $\Delta = \sum -\partial_j^2$, need: $D = \sum \epsilon_j \partial_j$ with $\epsilon_j \epsilon_i + \epsilon_i \epsilon_j = -\delta_{ij}$.

These relations are the relations of the generators of the Clifford algebra; in 4D they are satisfied by the Pauli-Dirac matrices.

Schrödinger: generalization to curved space-time (local calculation) satisfies

$$D^2 = \nabla^* \nabla + \frac{1}{4} \text{scal}.$$
Setting: our compact smooth manifold M without boundary

Given a spin structure (a strengthened version of orientation) and a Riemannian metric, one gets:

1. the spinor bundle S over M. Sections of this bundle are spinors, (i.e. certain vector-valued functions, where the vector space depends smoothly on the point)

2. the Dirac operator D acting on spinors: a first order differential operator which is *elliptic*. Example: In flat space, D is a square root of the vector Laplacian.
Elliptic operators and index

- Analytic fact: an elliptic operator D on a compact manifold is Fredholm: it has a quasi-inverse P such that

$$DP - 1 = Q_1; \quad PD - q = Q_2$$

and Q_1, Q_2 are compact operators. The compact operators are norm limits of operators with finite dimensional image. They form an ideal in the algebra of all bounded operators.

- Consequence of Fredholm property: null-space of the operator and of the adjoint are finite dimensional, and then

$$\text{ind}(D) := \dim(\ker(D)) - \dim(\ker(D^*)) .$$

- We apply this to the Dirac operator (strictly speaking to its restriction D^+ to positive spinors).
If M is compact spin, we have the celebrated

Theorem (Atiyah-Singer index theorem)

\[\text{ind}(D) = \hat{A}(M) \]

Here $\hat{A}(M)$ is a differential-topological invariant of the manifold which can be efficiently computed without ever solving differential equations. It does not depend on the metric (D does).
Characteristic classes and characteristic numbers

Classical subject:
- To vector bundle $E \to B$ we assign cohomology classes $p(E) \in H^*(B)$ (Chern classes, Pontryagin classes, (Stiefel Whitney classes))
- The are natural: $p(f^*E) = f^*p(E)$
- Sum and product formulas
- Calculation using curvature differential form (of connection on bundle)
- If $B = M$ closed manifold and $p \in H^{\dim(M)}(M)$ we get associated characteristic number $\int_M p(E) = \langle p(E), [M] \rangle$

Applied to TM get characteristic classes and numbers of smooth manifolds.
Schrödinger-Lichnerowicz formula and consequences

Theorem

Schrödinger’s (rediscovered by Lichnerowicz) local calculation relates the Dirac operator to positive scalar curvature. It implies:

if the scalar curvature is everywhere positive, then the Dirac operator is really invertible (not only modulo compact operators) (more explicitly, one shows that D^2 is strictly positive, which implies invertibility of D).

Proof.

triviality of kernel:

$$Ds = 0 \implies D^2s = 0 \implies 0 = \langle D^2s, s \rangle = \langle Ds, Ds \rangle = 0 \implies Ds = 0$$

$$0 = \langle D^2s, s \rangle = \langle \nabla^* \nabla s, s \rangle + \left\langle \frac{\text{scal}}{4}, s, s \right\rangle = |\nabla s|^2 + \frac{1}{4} \int_M \text{scal}(x) \langle s(x), s(x) \rangle_x$$
Consequence: If M has positive scalar curvature, then $\text{ind}(D) = 0$, therefore $\hat{A}(M) = 0$:

$\hat{A}(M) \neq 0$ is an obstruction to positive scalar curvature!

Example: Kummer surface $K3$ (in general: algebraic geometry of smooth varieties over \mathbb{C} a great help to calculate characteristic classes).

Non-example: $\mathbb{C}P^2$ has $\hat{A}(\mathbb{C}P^2) = -1/8 \neq 0$, but definitely does admit positive scalar curvature (the standard Fubini-Study metric even has positive sectional curvature). It does not have a spin structure. Second application of index theorem: **Integrality** of characteristic numbers.

Non-example: T^n — the tangent bundle has a flat connection (it is even trivial), so all characteristic classes and numbers vanish.
Slogan: Index is based on an element in the algebra of (bounded) operators which is invertible modulo the ideal of compact operators. This is encoded in K-theory: we have the exact sequence of C^*-algebras

$$0 \rightarrow K \rightarrow B \rightarrow B/K \rightarrow 0$$

of the ideal K of compact operators inside the algebra B of bounded operators, with quotient the Calkin algebra B/K.
We have for a (stable) C^*-algebra A:

- $K_1(A)$ are homotopy classes of invertible elements over A
- $K_0(A)$ are homotopy classes of projections in A
- 6-term long exact K-theory sequence for ideal $I \subset A$:

$$
\rightarrow K_0(A/I) \rightarrow K_1(I) \rightarrow K_1(A) \rightarrow K_1(A/I) \xrightarrow{\text{ind}} K_0(I) \rightarrow
\rightarrow K_0(A) \rightarrow K_0(A/I) \rightarrow
$$

Example

An elliptic operator is invertible modulo K, i.e. represents an element in $K_1(B/K)$, its index is then an element in $K_0(K) = \mathbb{Z}$.
General goal: find in a given situation appropriate algebras to arrive at similar index situations. Criteria:

- index construction must be possible (operator in A, invertible modulo an ideal I)
- calculation tools for $K_*(I)$
- relevant geometric conditions which imply vanishing of index
- Useful/crucial is the context of C^*-algebras, where *positivity implies invertibility.*
Non-compact manifolds

What can we do if M is not compact?
Why care in the first place?
Non-compact manifolds

What can we do if M is not compact?
Why care in the first place?
This is of relevance even when studying compact manifolds:

- extra information can be obtained by studying the covering spaces with their group of deck transformation symmetries (e.g. $\mathbb{R}^n \to T^n$ with deck transformation action by \mathbb{Z}^n).
- attaching an infinite half-cylinder to the boundary of a compact manifold with boundary assigns a manifold without boundary, but which is non-compact.
- Interesting in their own right.
There are dedicated C^\ast-algebras (of bounded operators) adapted to the analytic features of Dirac operators:

$$0 \to C^\ast(M)\Gamma \to D^\ast(M)\Gamma \to D^\ast(M)\Gamma / C^\ast(M)\Gamma \to 0$$

such that the Dirac operator (if Γ acts isometrically on the complete manifold M) defines an operator in $D^\ast(M)\Gamma$ invertible module $C^\ast(M)\Gamma$, therefore a class in $K_\ast(D^\ast(M)\Gamma / C^\ast(M)\Gamma)$, but if one has uniformly positive scalar curvature, it is even invertible in $D^\ast(M)\Gamma$ and therefore one has a lift to $K_\ast(D^\ast(M)\Gamma)$ (the lift depends on the psc metric). Therefore, the index in $K_\ast(C^\ast(M)\Gamma$ is an obstruction to psc on M.

Homotopy invariance: the class doesn’t change if one deforms the metric within its bilipschitz class.

multipartitioned manifold index theorem: reduces to compact submanifold. Works e.g. for \mathbb{R}^n and therefore the torus.
Theorem

Assume $N \subset M$ is a codimension k submanifold with trivial normal bundle (both closed). Assume $\pi_1(N) \to \pi_1(M)$ is injective. Assume $\pi_j(M) = 0$ for $2 \leq j < k$ and $\pi_k(N) \to \pi_k(M)$.

Assume that the Mishchenko index $\text{ind}(D_N) \in KO^*(C^*\pi_1N)$ is non-zero.

Then M does not have positive scalar curvature if

1. $n = 1$ (Rudi Zeidler) —full picture including transfer
2. $n = 2$ (Hanke-Pape-Schick) —C^*-proof
3. general n, if the non-vanishing holds rationally and the Novikov conjecture (rational injectivity of Baum-Connes assembly map) holds for π_1M —topological transfer proof (Engel, Schick-Zeidler)

Higson-Schick-Xie: generalization to homotopy invariance of codimension 2 signatures
Coarse geometry is focusing on the *large scale features* of a (metric) space.

Definition

Two metric spaces X, Y are coarsely equivalent if there is a maps $f : X \rightarrow Y$, $g : Y \rightarrow X$ such that

- f, g are coarse maps, i.e. $\forall c > 0$ there is $C > 0$ such that if $d(x, y) < c$ then $d(f(x), f(y)) < C$, and the inverse image of every bounded set is bounded.
Coarse geometry is focusing on the *large scale features* of a (metric) space.

Definition

Two metric spaces X, Y are coarsely equivalent if there is a maps $f : X \to Y, g : Y \to X$ such that

- f, g are coarse maps, i.e. $\forall c > 0$ there is $C > 0$ such that if $d(x, y) < c$ then $d(f(x), f(y)) < C$, and the inverse image of every bounded set is bounded.

- both $f \circ g$ and $g \circ f$ are close to the identity, i.e. $\exists C$ such that $d(f \circ g(x), x) \leq C$ for all x.

Note that f, g are not required to be continuous.
\mathbb{Z}^n and \mathbb{R}^n are coarsely equivalent, with f the inclusion and g the integer part.

Slogan: the coarse type is what one sees if one looks at a space from very far away.

- In general, if a discrete group Γ acts freely isometrically on a metric space X with compact quotient X/Γ, then X and the orbit of any point (corresponding to Γ) are coarsely equivalent.
- All compact metric spaces are coarsely equivalent to each other.
Coarse C^*-algebras

Definition

M a Riemannian spin manifold (not necessarily compact). The coarse algebra/Roe algebra $C^*(M)$ is the algebra of bounded operators T on $L^2(S)$ satisfying

- T has finite propagation: there is R_T such that the support of $T(s)$ is contained in the R_T-neighborhood of the support of s for each s.

...
Coarse C^*-algebras

Definition

M a Riemannian spin manifold (not necessarily compact). The coarse algebra/Roe algebra $C^*(M)$ is the algebra of bounded operators T on $L^2(S)$ satisfying

- T has finite propagation: there is R_T such that the support of $T(s)$ is contained in the R_T-neighborhood of the support of s for each s.
- Local compactness: if $\phi \in C(M)$ has compact support, the composition of T with multiplication by ϕ (on either side) is a compact operator.
- Picture: the Schwarz (pseudodifferential integral) kernel of T has support in an R_T-neighborhood of the diagonal, and each “bounded piece” of it is a compact operator.
Example

If M is compact, $C^*(M)$ is the ideal of compact operators.

Theorem

The isomorphism type of $C^*(M)$ depends only on the coarse type of M. Coarse maps induce canonical and functorial C^*-algebra homomorphisms between the Roe algebras.
Not only coarse C^*-algebras

Definition

The algebra $D^*(M)$ is the “normalizer” of $C^*(M)$ in $B(L^2(M))$: the largest subalgebra such that $C^*(M)$ is an ideal in $D^*(M)$ (also called the multiplier algebra).

Lemma

$C^*(M)$ is an ideal of $D^*(M)$. $D^*(M)$ (and its K-theory) do depend on the small scale topology of M.

(with $D^*(M)$ we are slightly deviating from the usual notation.)
The Dirac operator on a spin manifold M defines an invertible element $\chi(D) \in D^*(M)/C^*(M)$ and therefore a coarse index

$$\text{ind}_c(D) \in K_*(C^*(M))$$

Even better:

Theorem

If an interval around 0 is not in the spectrum of D (i.e. D^2 is strictly positive, which follows from positive scalar curvature), the Dirac operator again defines an element which is invertible in $D^(M)$, so $\text{ind}_c(D) = 0 \in K_*(C^*(M))$ in this case.*

(Again, we really have to use the Dirac operator restricted to positive spinors)
There are good tools to compute $K_\ast(C^\ast(M))$, e.g. a

- *Mayer-Vietoris sequence* to put the information together by breaking up M in simpler pieces
- vanishing results for suitable kinds of coarse contractibility, in particular if $X = Y \times [0, \infty)$.

Example consequence:

Theorem

$$K_0(C^\ast(\mathbb{R}^{2n})) = \mathbb{Z}; \quad K_1(C(\mathbb{R}^{2n+1})) = \mathbb{Z}.$$
Let P be a connected manifold with $\hat{A}(P) \neq 0$. Let $P \to M \to T^n$ be a fiber bundle. Does M admit a metric of positive scalar curvature?
Let P be a connected manifold with $\hat{A}(P) \neq 0$. Let $P \rightarrow M \rightarrow T^n$ be a fiber bundle. Does M admit a metric of positive scalar curvature? We can pass to the covering $P \rightarrow \tilde{M} \rightarrow \mathbb{R}^n$. Using functoriality, we can map the coarse index of \tilde{M} to $p_*(\text{ind}_c) \in K_n(T^n) = \mathbb{Z}$.

Theorem (Partitioned manifold index theorem)

$p_*(\text{ind}_c) = \hat{A}(P)$.

Corollary

\tilde{M} and therefore M does not admit a metric of positive scalar curvature.
Let P be a connected manifold with $\hat{A}(P) \neq 0$. Let $P \to M \to T^n$ be a fiber bundle. Does M admit a metric of positive scalar curvature? We can pass to the covering $P \to \tilde{M} \xrightarrow{p} \mathbb{R}^n$. Using functoriality, we can map the coarse index of \tilde{M} to $p_*(\text{ind}_c) \in K_n(T^n) = \mathbb{Z}$.

Theorem (Partitioned manifold index theorem)

$$p_*(\text{ind}_c) = \hat{A}(P).$$
Let P be a connected manifold with $\hat{A}(P) \neq 0$. Let $P \rightarrow M \rightarrow T^n$ be a fiber bundle. Does M admit a metric of positive scalar curvature?

We can pass to the covering $P \rightarrow \tilde{M} \rightarrow \mathbb{R}^n$. Using functoriality, we can map the coarse index of \tilde{M} to $p_*(\text{ind}_c) \in K_n(T^n) = \mathbb{Z}$.

Theorem (Partitioned manifold index theorem)

$$p_*(\text{ind}_c) = \hat{A}(P).$$

Corollary

\tilde{M} and therefore M does not admit a metric of positive scalar curvature.
Theorem

If M contains a geodesic ray $R \subset M$ and the scalar curvature is uniformly positive outside an r-neighborhood of R for some $r > 0$, then already

$$\text{ind}_c(D) = 0 \in K_*(C^*(M)).$$
Improved vanishing

Theorem

If M contains a geodesic ray $R \subset M$ and the scalar curvature is uniformly positive outside an r-neighborhood of R for some $r > 0$, then already

$$\text{ind}_c(D) = 0 \in K_*(C^*(M)).$$

For the proof, consider the small ideal $C^*(R \subset M)$ in $D^*(M)$ of operators in $C^*(M)$ supported near R.

- local analysis shows that $\chi(D)$ is invertible module $C^*(R \subset M)$
Improved vanishing

Theorem

If M contains a geodesic ray $R \subset M$ and the scalar curvature is uniformly positive outside an r-neighborhood of R for some $r > 0$, then already

$$\text{ind}_c(D) = 0 \in K_*(C^*(M)).$$

For the proof, consider the small ideal $C^*(R \subset M)$ in $D^*(M)$ of operators in $C^*(M)$ supported near R.

- Local analysis shows that $\chi(D)$ is invertible module $C^*(R \subset M)$

$$K_1(D^*(M)/C^*(R \subset M)) \longrightarrow K_0(C^*(R \subset M))$$

- Naturality:

$$K_1(D^*(M)/C^*(M)) \longrightarrow K_0(D^*(M))$$

For the proof, consider the small ideal $C^*(R \subset M)$ in $D^*(M)$ of operators in $C^*(M)$ supported near R.

- Local analysis shows that $\chi(D)$ is invertible module $C^*(R \subset M)$

$$K_1(D^*(M)/C^*(R \subset M)) \longrightarrow K_0(C^*(R \subset M))$$

- Naturality:

$$K_1(D^*(M)/C^*(M)) \longrightarrow K_0(D^*(M))$$
Improved vanishing

Theorem

If M *contains a geodesic ray* $R \subset M$ *and the scalar curvature is uniformly positive outside an* r-*neighborhood of* R *for some* $r > 0$, *then already*

$$\text{ind}_c(D) = 0 \in K_*(C^*(M)).$$

For the proof, consider the small ideal $C^*(R \subset M)$ in $D^*(M)$ of operators in $C^*(M)$ *supported near* R.

- local analysis shows that $\chi(D)$ is invertible module $C^*(R \subset M)$
 $$K_1(D^*(M)/C^*(R \subset M)) \longrightarrow K_0(C^*(R \subset M))$$

- naturality:
 $$K_1(D^*(M)/C^*(M)) \longrightarrow K_0(D^*(M))$$
 $$K_*([0, \infty)) = 0.$$
Theorem (Hanke-Schick)

Let M be a compact spin manifold, $N \subset M$ a submanifold of codimension 2 with trivial tubular neighborhood $N \times D^2 \subset M$.
Assume that every map from a 2-sphere to M can be extended to a map from D^3 to M (i.e. $\pi_2(M) = 0$).
Assume that the index of the image of $\pi_1(N)$ in $\pi_1(M)$ is infinite.
Assume that $\text{ind}(D_N) \neq 0$
Then M does not carry a metric of positive scalar curvature.
Theorem (Hanke-Schick)

Let M be a compact spin manifold, $N \subset M$ a submanifold of codimension 2 with trivial tubular neighborhood $N \times D^2 \subset M$.
Assume that every map from a 2-sphere to M can be extended to a map from D^3 to M (i.e. $\pi_2(M) = 0$).
Assume that the index of the image of $\pi_1(N)$ in $\pi_1(M)$ is infinite.
Assume that $\text{ind}(D_N) \neq 0$

Then M does not carry a metric of positive scalar curvature.

Uses the previous result by passing to a suitable covering, then doing a glueing construction along the hypersurface, then uses the partitioned manifold index theorem,...
Throughout, we can replace the complex numbers by any C^*-algebra A; the algebras $K, B, C^*(M), D^*(M)$ have then (essentially) to be tensored with A: we get the K-theory of A into the picture.

The whole story then relates to the *Baum-Connes conjecture*.

Example (Gromov-Lawson with different method)

This applies to the "generic" 3-manifold, namely every orientable prime and irreducible 3-manifold M with submanifold N a non-contractible circle.
Throughout, we can replace the complex numbers by any C^*-algebra A; the algebras $K, B, C^*(M), D^*(M)$ have then (essentially) to be tensored with A: we get the K-theory of A into the picture.

The whole story then relates to the *Baum-Connes conjecture*. In the previous theorem, we can replace

\[
\text{ind}(D_N) \neq 0 \text{ by } \text{ind}_{BC}(D) \neq 0 \in K_*(C^*\pi_1(N)).
\]

Example (Gromov-Lawson with different method)

This applies to the “generic” 3-manifold, namely every orientable prime and irreducible 3-manifold M with submanifold N a non-contractible circle.
THANK YOU

Or do you want to see technical details of the index construction for the Dirac operator
Index is about kernel/spectrum near zero, so we can push the large "eigenvalues" in to make D bounded: pick

$$\chi(x) = x/(1 + x^2)$$

or (using homotopy invariance of index) any other odd function which goes to ± 1 for $x \to \pm \infty$ and consider $\chi(D)$. By Fourier inversion

$$\chi(D) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\chi}(\xi) \exp(i\xi D) \, d\xi.$$

Then $\chi(D) \in D^*(M)$. Moreover, $\chi(D)^2 - 1 \in C^*(M)$, i.e. $[\chi(D)^2] = 1 \in D^*(M)/C^*(M)$: invertibility.

If an interval around zero is not in the spectrum, we can choose χ to have the values ± 1 on the spectrum of D, then indeed $\chi^2(D) = 1 \in D^*(M)$ (no quotient necessary).
Proof of analytic properties of D

Standard analysis gives

- unit propagation of the wave operator implies that $\exp(i\xi D)$ has propagation ξ.
- $(\hat{\chi}^2 - 1)$ and also $\hat{\chi}$ can be approximated by functions with compact support.
- Consequence: finite propagation of $\chi(D)$.
- Elliptic regularity implies the local compactness of $\chi^2(D) - 1$.
- Because $\hat{\chi}(\xi)$ is a distribution which is smooth outside 0, but has a singularity at 0, for $\chi(D)$ in this argument one has to avoid the diagonal and therefore only gets pseudolocality.